
Is Pessimism Provably Efficient for Offline RL?

Ying Jin

Stanford Statistics

RL Theory Virtual Seminars

April 6, 2020

Joint work with

Zhuoran Yang

Princeton ORFE

Zhaoran Wang

Northwestern IEMS

1 / 36

Backgrounds

I Episodic MDP

I Offline Learning Protocol

I Difficulty and Epistemic Uncertainty

2 / 36

Episodic MDP

I S: infinite state space. A: finite action space.

I Unknown reward function rh : S ×A → [0, 1].

I Unknown transition kernel Ph(· |x, a) ∈ ∆(S).

I Finite horizon H: terminate when h = H.

3 / 36

Episodic MDP

I Policy: π = {πh}h∈[H] : S → ∆(A), ah ∼ πh(sh).

I Expected total reward: J(π, x) = Eπ[
∑H
h=1 rh | s1 = x] ∈ [0, H].

I Optimal policy: π?(·) = argmaxπ J(π, ·).

4 / 36

Episodic MDP
Dynamic Programming and Bellman Equation

I π? is greedy w.r.t. optimal value functions Q? = {Q?h}h∈[H].

π?h(x) = argmax
a∈A

Q?h(x, a), ∀s ∈ S,

Q?h(x, a) = rh(x, a) + Esh+1∼P
[

max
a′∈A

Q?h+1(sh+1, a
′)
∣∣ sh = x, ah = a

]
︸ ︷︷ ︸

Bellman operator Bh: BhQ?
h+1

I Bellman Equation

Q?h = BhQ?h+1, Q?H+1 ≡ 0.

I RL with function approximation:

Function class F = {f : S ×A → R} approximates Q?h.

Linear functions, Neural networks, RKHS...

5 / 36

Episodic MDP
Dynamic Programming and Bellman Equation

I π? is greedy w.r.t. optimal value functions Q? = {Q?h}h∈[H].

π?h(x) = argmax
a∈A

Q?h(x, a), ∀s ∈ S,

Q?h(x, a) = rh(x, a) + Esh+1∼P
[

max
a′∈A

Q?h+1(sh+1, a
′)
∣∣ sh = x, ah = a

]
︸ ︷︷ ︸

Bellman operator Bh: BhQ?
h+1

I Bellman Equation

Q?h = BhQ?h+1, Q?H+1 ≡ 0.

I RL with function approximation:

Function class F = {f : S ×A → R} approximates Q?h.

Linear functions, Neural networks, RKHS...

5 / 36

Episodic MDP
Dynamic Programming and Bellman Equation

I π? is greedy w.r.t. optimal value functions Q? = {Q?h}h∈[H].

π?h(x) = argmax
a∈A

Q?h(x, a), ∀s ∈ S,

Q?h(x, a) = rh(x, a) + Esh+1∼P
[

max
a′∈A

Q?h+1(sh+1, a
′)
∣∣ sh = x, ah = a

]
︸ ︷︷ ︸

Bellman operator Bh: BhQ?
h+1

I Bellman Equation

Q?h = BhQ?h+1, Q?H+1 ≡ 0.

I RL with function approximation:

Function class F = {f : S ×A → R} approximates Q?h.

Linear functions, Neural networks, RKHS...

5 / 36

Episodic MDP
Dynamic Programming and Bellman Equation

I π? is greedy w.r.t. optimal value functions Q? = {Q?h}h∈[H].

π?h(x) = argmax
a∈A

Q?h(x, a), ∀s ∈ S,

Q?h(x, a) = rh(x, a) + Esh+1∼P
[

max
a′∈A

Q?h+1(sh+1, a
′)
∣∣ sh = x, ah = a

]
︸ ︷︷ ︸

Bellman operator Bh: BhQ?
h+1

I Bellman Equation

Q?h = BhQ?h+1, Q?H+1 ≡ 0.

I RL with function approximation:

Function class F = {f : S ×A → R} approximates Q?h.

Linear functions, Neural networks, RKHS...

5 / 36

Offline Policy Learning
Learn from Given Datasets

I Offline Data: collected a priori.

I Arbitrary trajectories: actions ah by an offline agent (unknown rule).

I No further interactions with MDP.

I Learning objective: performance of the learned policy

SubOpt(π̂, x) = J(π?, x)− J(π̂, x),

where π̂ =OfflineRL(D,F), x ∈ S.

6 / 36

Offline Policy Learning
Learn from Given Datasets

I Offline Data: collected a priori.

I Arbitrary trajectories: actions ah by an offline agent (unknown rule).

I No further interactions with MDP.

I Learning objective: performance of the learned policy

SubOpt(π̂, x) = J(π?, x)− J(π̂, x),

where π̂ =OfflineRL(D,F), x ∈ S.

6 / 36

Offline Policy Learning
Naive Value Iterations

I By Bellman equation: approximate dynamic programming.

Naive Value Iterations

• End of Episode: Q̂H+1 ← 0.

• Dynamic Programming: h = H,H − 1, . . . , 1,

Estimate: Q̂h ← Regress(BhQ̂h+1,D,F).

Optimize: π̂h(x)← argmaxa∈A Q̂h(x, a).

I Hope for ...

• Good estimation: Q̂h ≈ Q?h.
• Good optimization:

argmax
a

Q̂h(x, a) ≈ argmax
a

Q?h(x, a).

• Good actual performance:

J(π̂) ≈ J(π?).

7 / 36

Offline Policy Learning
Naive Value Iterations

I By Bellman equation: approximate dynamic programming.

Naive Value Iterations

• End of Episode: Q̂H+1 ← 0.

• Dynamic Programming: h = H,H − 1, . . . , 1,

Estimate: Q̂h ← Regress(BhQ̂h+1,D,F).

Optimize: π̂h(x)← argmaxa∈A Q̂h(x, a).

I Hope for ...

• Good estimation: Q̂h ≈ Q?h.
• Good optimization:

argmax
a

Q̂h(x, a) ≈ argmax
a

Q?h(x, a).

• Good actual performance:

J(π̂) ≈ J(π?).

7 / 36

Why May Naive Value Iterations Fail?
An Example: Multi-Arm Bandit

I Gaussian bandits

Ri |Ai=a
∼ N(r(a), 1), a ∈ [K] arms.

I a is pulled N(a) times in the pre-collected dataset D = {(Ai, Ri)}.

I Following the naive value iterations,

• Estimate by sample mean: µ̂(a) =

∑
i:Ai=a Ri

N(a)
.

• Optimize by greedy: â = argmaxa∈[K] µ̂(a).

I For small N(a), a bad arm a might appear good by chance.

8 / 36

Why May Naive Value Iterations Fail?
An Example: Multi-Arm Bandit

I Gaussian bandits

Ri |Ai=a
∼ N(r(a), 1), a ∈ [K] arms.

I a is pulled N(a) times in the pre-collected dataset D = {(Ai, Ri)}.
I Following the naive value iterations,

• Estimate by sample mean: µ̂(a) =

∑
i:Ai=a Ri

N(a)
.

• Optimize by greedy: â = argmaxa∈[K] µ̂(a).

I For small N(a), a bad arm a might appear good by chance.

8 / 36

Why May Naive Value Iterations Fail?
An Example: Multi-Arm Bandit

I Gaussian bandits

Ri |Ai=a
∼ N(r(a), 1), a ∈ [K] arms.

I a is pulled N(a) times in the pre-collected dataset D = {(Ai, Ri)}.
I Following the naive value iterations,

• Estimate by sample mean: µ̂(a) =

∑
i:Ai=a Ri

N(a)
.

• Optimize by greedy: â = argmaxa∈[K] µ̂(a).

I For small N(a), a bad arm a might appear good by chance.

8 / 36

Why May Naive Value Iterations Fail?
An Example: Multi-Arm Bandit

I For small N(a), a bad arm a might appear good by chance.

action

value

µ(a1)
µ̂(a1)

µ(a2)
µ̂(a2)

µ(a|A|)

µ̂(a|A|)

N(a1)
large

N(a2)
large

N(a|A|)
small

· · ·

· · ·

π̂(·) = argmaxπ〈µ̂(·), π(·)〉A
π∗(·) = argmaxπ〈µ(·), π(·)〉A

9 / 36

Why May Naive Value Iterations Fail?
Epistemic Uncertainty

I Policy π̃ insufficiently covered by dataset D
⇒ Large uncertainty in our knowledge about a policy π̃.

I Epistemic Uncertainty spuriously correlates with decision-making

(greedy step). Roughly,

J(π̂) = J
(
argmax

π
Ĵ(π)

)
.

Ĵ might be far from J for some π.

I Ruined if a bad π with large uncertainty appears to be good!

I No further interactions with MDP ⇒ unable to reduce uncertainty.

10 / 36

Why May Naive Value Iterations Fail?
Epistemic Uncertainty

I Policy π̃ insufficiently covered by dataset D
⇒ Large uncertainty in our knowledge about a policy π̃.

I Epistemic Uncertainty spuriously correlates with decision-making

(greedy step). Roughly,

J(π̂) = J
(
argmax

π
Ĵ(π)

)
.

Ĵ might be far from J for some π.

I Ruined if a bad π with large uncertainty appears to be good!

I No further interactions with MDP ⇒ unable to reduce uncertainty.

10 / 36

Why May Naive Value Iterations Fail?
Epistemic Uncertainty

I Policy π̃ insufficiently covered by dataset D
⇒ Large uncertainty in our knowledge about a policy π̃.

I Epistemic Uncertainty spuriously correlates with decision-making

(greedy step). Roughly,

J(π̂) = J
(
argmax

π
Ĵ(π)

)
.

Ĵ might be far from J for some π.

I Ruined if a bad π with large uncertainty appears to be good!

I No further interactions with MDP ⇒ unable to reduce uncertainty.

10 / 36

Why May Naive Value Iterations Fail?
Epistemic Uncertainty

I Policy π̃ insufficiently covered by dataset D
⇒ Large uncertainty in our knowledge about a policy π̃.

I Epistemic Uncertainty spuriously correlates with decision-making

(greedy step). Roughly,

J(π̂) = J
(
argmax

π
Ĵ(π)

)
.

Ĵ might be far from J for some π.

I Ruined if a bad π with large uncertainty appears to be good!

I No further interactions with MDP ⇒ unable to reduce uncertainty.

10 / 36

Why May Naive Value Iterations Fail?
Epistemic Uncertainty

I Ruined if a bad π with large uncertainty appears to be good!

I No further interactions with MDP ⇒ unable to reduce uncertainty.

I Uniform coverage for all policies? Too strong & unrealistic.

11 / 36

Why May Naive Value Iterations Fail?
Epistemic Uncertainty

Question

Is it possible to design a provably efficient algorithm for

offline RL under minimal assumptions on the dataset?

I Our solution by Pessimism: penalize large epistemic uncertainties.
• High estimated value, high uncertainty
• High estimated value, low uncertainty
• Good estimated value, low uncertainty

12 / 36

Why May Naive Value Iterations Fail?
Epistemic Uncertainty

Question

Is it possible to design a provably efficient algorithm for

offline RL under minimal assumptions on the dataset?

I Our solution by Pessimism: penalize large epistemic uncertainties.

• High estimated value, high uncertainty
• High estimated value, low uncertainty
• Good estimated value, low uncertainty

12 / 36

Why May Naive Value Iterations Fail?
Epistemic Uncertainty

Question

Is it possible to design a provably efficient algorithm for

offline RL under minimal assumptions on the dataset?

I Our solution by Pessimism: penalize large epistemic uncertainties.
• High estimated value, high uncertainty

• High estimated value, low uncertainty
• Good estimated value, low uncertainty

12 / 36

Why May Naive Value Iterations Fail?
Epistemic Uncertainty

Question

Is it possible to design a provably efficient algorithm for

offline RL under minimal assumptions on the dataset?

I Our solution by Pessimism: penalize large epistemic uncertainties.
• High estimated value, high uncertainty
• High estimated value, low uncertainty

• Good estimated value, low uncertainty

12 / 36

Why May Naive Value Iterations Fail?
Epistemic Uncertainty

Question

Is it possible to design a provably efficient algorithm for

offline RL under minimal assumptions on the dataset?

I Our solution by Pessimism: penalize large epistemic uncertainties.
• High estimated value, high uncertainty
• High estimated value, low uncertainty
• Good estimated value, low uncertainty

12 / 36

A Solution:

Pessimism for Offline Learning

I Pessimistic Value Iteration

I Why Pessimism Helps

I PEVI for Linear MDP

13 / 36

Pessimism for Offline Learning
Pessimism Principle

I Empirical success in practice:
• Pessimistic model-based [Yu et al. (2020); Kidambi et al. (2020)]
• Pessimistic value-based [Kumar et al. (2020)]

I In theory:
• Regularized fitted Q-iterations [Liu et al. (2020)]: restrict policy class to

be close to behavior policy.
• Importance of Pessimism [Buckman et al. (2020)]

I This work: Pessimistic Value Iteration.

• A principled framework for pessimism in value iterations.
• No restriction on policy class and coverage of dataset.
• Optimality of pessimism in the sense of information theory.

14 / 36

Pessimism for Offline Learning
Pessimism Principle

I Empirical success in practice:
• Pessimistic model-based [Yu et al. (2020); Kidambi et al. (2020)]
• Pessimistic value-based [Kumar et al. (2020)]

I In theory:
• Regularized fitted Q-iterations [Liu et al. (2020)]: restrict policy class to

be close to behavior policy.
• Importance of Pessimism [Buckman et al. (2020)]

I This work: Pessimistic Value Iteration.

• A principled framework for pessimism in value iterations.
• No restriction on policy class and coverage of dataset.
• Optimality of pessimism in the sense of information theory.

14 / 36

Pessimism for Offline Learning
General Algorithm: Pessimistic Value Iteration

Algorithm: Pessimistic Value Iterations (General Form)

I Estimate: Qh ← Regress(BhQ̂h+1,D,F).

I

I Construct pessimistic value function

Q̂h(x, a) = Qh(x, a)︸ ︷︷ ︸
VI

−Γh(x, a)︸ ︷︷ ︸
penalty

15 / 36

Pessimism for Offline Learning
General Algorithm: Pessimistic Value Iteration

Algorithm: Pessimistic Value Iterations (General Form)

I Estimate: Qh ← Regress(BhQ̂h+1,D,F).

I Uncertainty quantification (UQ): w.h.p.∣∣Qh − (BhQ̂h+1)
∣∣ ≤ Γh, ∀h ∈ [H].

I Construct pessimistic value function

Q̂h(x, a) = Qh(x, a)︸ ︷︷ ︸
VI

−Γh(x, a)︸ ︷︷ ︸
penalty

15 / 36

Pessimism for Offline Learning
General Algorithm: Pessimistic Value Iteration

Algorithm: Pessimistic Value Iterations (General Form)

I Estimate: Qh ← Regress(BhQ̂h+1,D,F).

I Uncertainty quantification (UQ): w.h.p.
∣∣Qh − (BhQ̂h+1)

∣∣ ≤ Γh

I Construct pessimistic value function

Q̂h(x, a) = Qh(x, a)︸ ︷︷ ︸
VI

−Γh(x, a)︸ ︷︷ ︸
penalty

15 / 36

Pessimism for Offline Learning
General Algorithm: Pessimistic Value Iteration

Algorithm: Pessimistic Value Iterations (General Form)

I Estimate: Qh ← Regress(BhQ̂h+1,D,F).

I Uncertainty quantification (UQ): w.h.p.∣∣Qh − (BhQ̂h+1)
∣∣ ≤ Γh, ∀h ∈ [H].

I Construct pessimistic value function

Q̂h(x, a) = Qh(x, a)︸ ︷︷ ︸
VI

−Γh(x, a)︸ ︷︷ ︸
penalty

I Optimize: π̂h(x) = argmaxa∈A Q̂h(x, a).

16 / 36

Why Pessimism Helps?
Boundedness of Evaluation Error1

I Define the model evaluation error

ιh(x, a) = (BhQ̂h+1)(x, a)− Q̂h(x, a).

I By pessimistic construction, the model evaluation error satisfy

BhQ̂h+1 ∈
[
Q̂h, Q̂h + 2Γh

]
⇒ 0 ≤ ιh(sh, ah) ≤ 2Γh(sh, ah).

1Adapted from Lemma 5.1 in (JYW’20)
17 / 36

Why Pessimism Helps?
Boundedness of Evaluation Error1

I Define the model evaluation error

ιh(x, a) = (BhQ̂h+1)(x, a)− Q̂h(x, a).

I By pessimistic construction, the model evaluation error satisfy

BhQ̂h+1 ∈
[
Q̂h, Q̂h + 2Γh

]
⇒ 0 ≤ ιh(sh, ah) ≤ 2Γh(sh, ah).

1Adapted from Lemma 5.1 in (JYW’20)
17 / 36

Why Pessimism Helps?
Boundedness of Evaluation Error1

I Define the model evaluation error

ιh(x, a) = (BhQ̂h+1)(x, a)− Q̂h(x, a).

I By pessimistic construction, the model evaluation error satisfy

BhQ̂h+1 ∈
[
Q̂h, Q̂h + 2Γh

]
⇒ 0 ≤ ιh(sh, ah) ≤ 2Γh(sh, ah).

1Adapted from Lemma 5.1 in (JYW’20)
17 / 36

Why Pessimism Helps?
Decomposition of Suboptimality2

I We have the decomposition of suboptimality

SubOpt(π̂;x) = −
H∑
h=1

Eπ̂
[
ιh(sh, ah)

∣∣ s1 = x
]

︸ ︷︷ ︸
(i): Spurious Correlation

+
H∑
h=1

Eπ?
[
ιh(sh, ah)

∣∣ s1 = x
]

︸ ︷︷ ︸
(ii): Intrinsic Uncertainty

+
H∑
h=1

Eπ?
[
〈Q̂h(sh, ·), π?h(· | sh)− π̂h(· | sh)〉A

∣∣ s1 = x
]

︸ ︷︷ ︸
(iii): Optimization Error

.

2Adapted from Lemma 3.1 in (JYW’20)
18 / 36

Why Pessimism Helps?
Suboptimality Upper Bound 3

I By pessimistic construction, the model evaluation error satisfy

0 ≤ ιh(sh, ah) ≤ 2Γh(sh, ah).

I (i) spurious correlation is always non-positive

−
H∑
h=1

Eπ̂
[
ιh(sh, ah)

∣∣ s1 = x
]
≤ 0.

I Greedy policy ensures (iii) optimization error is always non-positive

I A clean suboptimality bound
• Only depends on the trajectory of π∗

• Pessimism eliminates spurious correlation.

Question

How to construct the uncertainty quantifier Γh?

3Adapted from Theorem 4.2 in (JYW’20)
19 / 36

Why Pessimism Helps?
Suboptimality Upper Bound 3

I (i) spurious correlation is always non-positive

I Greedy policy ensures (iii) optimization error is always non-positive

H∑
h=1

Eπ∗
[
〈Q̂h(sh, ·), π∗h(· | sh)− π̂h(· | sh)〉A

∣∣ s1 = x
]
≤ 0.

I A clean suboptimality bound
• Only depends on the trajectory of π∗

• Pessimism eliminates spurious correlation.

Question

How to construct the uncertainty quantifier Γh?

3Adapted from Theorem 4.2 in (JYW’20)
19 / 36

Why Pessimism Helps?
Suboptimality Upper Bound 3

I (i) spurious correlation is always non-positive

I Greedy policy ensures (iii) optimization error is always non-positive

I A clean suboptimality bound

SubOpt(π̂;x) ≤
H∑
h=1

Eπ∗
[
ιh(sh, ah)

∣∣ s1 = x
]

≤ 2
H∑
h=1

Eπ∗
[
Γh(sh, ah)

∣∣ s1 = x
]

• Only depends on the trajectory of π∗

• Pessimism eliminates spurious correlation.

Question

How to construct the uncertainty quantifier Γh?

3Adapted from Theorem 4.2 in (JYW’20)
19 / 36

Why Pessimism Helps?
Suboptimality Upper Bound 3

I (i) spurious correlation is always non-positive

I Greedy policy ensures (iii) optimization error is always non-positive

I A clean suboptimality bound

SubOpt(π̂;x) ≤ 2

H∑
h=1

Eπ∗
[
Γh(sh, ah)

∣∣ s1 = x
]

• Only depends on the trajectory of π∗

• Pessimism eliminates spurious correlation.

Question

How to construct the uncertainty quantifier Γh?

3Adapted from Theorem 4.2 in (JYW’20)
19 / 36

Why Pessimism Helps?
Suboptimality Upper Bound 3

I (i) spurious correlation is always non-positive

I Greedy policy ensures (iii) optimization error is always non-positive

I A clean suboptimality bound

SubOpt(π̂;x) ≤ 2

H∑
h=1

Eπ∗
[
Γh(sh, ah)

∣∣ s1 = x
]

• Only depends on the trajectory of π∗

• Pessimism eliminates spurious correlation.

Question

How to construct the uncertainty quantifier Γh?

3Adapted from Theorem 4.2 in (JYW’20)
19 / 36

Instantiation of PEVI
Warm-up: i.i.d. Tabular Case

I Assume D consists of K i.i.d. trajectories from behavior policy πb.

I Assume concentrability coefficient

sup
x,a,h

ν?h(x, a)

νbh(x, a)
≤ κ?.

I Uncertainty quantifier

Γh(x, a) ∝ Nh(x, a)−1/2

I The PEVI algorithm gives

SubOpt(π̂;x) ≤
√
S2A ·H2

√
κ?/K.

20 / 36

Instantiation of PEVI
Warm-up: i.i.d. Tabular Case

I Assume D consists of K i.i.d. trajectories from behavior policy πb.

I Assume concentrability coefficient

sup
x,a,h

ν?h(x, a)

νbh(x, a)
≤ κ?.

I Uncertainty quantifier

Γh(x, a) ∝ Nh(x, a)−1/2

I The PEVI algorithm gives

SubOpt(π̂;x) ≤
√
S2A ·H2

√
κ?/K.

20 / 36

Instantiation of PEVI
Warm-up: i.i.d. Tabular Case

I Assume D consists of K i.i.d. trajectories from behavior policy πb.

I Assume concentrability coefficient

sup
x,a,h

ν?h(x, a)

νbh(x, a)
≤ κ?.

I Uncertainty quantifier

Γh(x, a) ∝ Nh(x, a)−1/2

I The PEVI algorithm gives

SubOpt(π̂;x) ≤
√
S2A ·H2

√
κ?/K.

20 / 36

Instantiation of PEVI
Linear MDP

Definition (Linear MDP)

We say an episodic MDP (S,A, H,P, r) is a linear MDP with a known

feature map φ : S ×A → Rd if there exist d unknown (signed) measures

µh = (µ
(1)
h , . . . , µ

(d)
h) over S and an unknown vector θh ∈ Rd such that

Ph(x′ |x, a) = 〈φ(x, a), µh(x′)〉,
E
[
rh(sh, ah)

∣∣ sh = x, ah = a
]

= 〈φ(x, a), θh〉

for all (x, a, x′) ∈ S ×A× S at each step h ∈ [H]. Here we assume

‖φ(x, a)‖ ≤ 1 for all (x, a) ∈ S ×A and max{‖µh(S)‖, ‖θh‖} ≤
√
d at

each step h ∈ [H], where ‖µh(S)‖ =
∫
S ‖µh(x)‖ dx.

I Linearity of Bellman update: BhQ̂h+1 = φ>θ̂h for some θ̂h ∈ Rd.

I Linear function approximation F = {fθ(x, a) = φ(x, a)>θ, θ ∈ Rd}.

21 / 36

Instantiation of PEVI
Linear MDP

Algorithm: PEVI for Linear MDP

I Estimate: Qh(x, a) = φ(x, a)>θ̂h via ridge regression.

I Uncertainty quantification

Γh(x, a) � dH ·
(
φ(x, a)>Λ−1

h φ(x, a)
)1/2

,

where Λh is the augmented sample covariance matrix of φ(sh, ah).

I Pessimistic value function

Q̂h(x, a) = φ(x, a)>θ̂h − c · dH ·
(
φ(x, a)>Λ−1

h φ(x, a)
)1/2

I Optimize: π̂h(x) = argmaxa∈A Q̂h(x, a).

22 / 36

Instantiation of PEVI - Linear MDP
Compliance Assumption

Assumption: Compliance

Let PD be the joint distribution of the dataset D = {(xτh, aτh, rτh)}K,Hτ,h=1.

We say D is compliant with an MDP (S,A, H,P, r) if

PD
(
rτh = r′, xτh+1 = x′

∣∣ {(xjh, ajh)}τj=1, {(r
j
h, x

j
h+1)}τ−1

j=1

)
= P

(
rh = r′, sh+1 = x′

∣∣ sh = xτh, ah = aτh
)

for all r′ ∈ [0, 1], x′ ∈ S, h ∈ [H], τ ∈ [K]. Here P is taken with

respect to the underlying MDP.

I Only require that D evolves according to the MDP.

I Minimal assumptions on actions aτh: allow for arbitrarily collected

data.
• i.i.d. trajectories from a behavior policy X
• sequentially adjusted actions aτh ∈ σ({xjh+1, r

j
h}j<τ) X

23 / 36

Instantiation of PEVI - Linear MDP
Suboptimality Upper Bound

Theorem 4.4 (JYW’20)

If D is compliant with the underlying MDP, then w.h.p,

SubOpt
(
π̂;x

)
≤ c · dH

H∑
h=1

Eπ?

[(
φ(sh, ah)>Λ−1

h φ(sh, ah)
)1/2 ∣∣∣ s1 = x

]
.

up to logarithm factors of d,H,K.

I Minimal-assumption guarantee: only require compliance of D.

I Oracle property: only depends on how well π? is covered - no requirement on

coverage of all trajectories.

I Data-dependent upper bound: (offline) data is what it is.

24 / 36

Instantiation of PEVI - Linear MDP
Suboptimality Upper Bound

Theorem 4.4 (JYW’20)

If D is compliant with the underlying MDP, then w.h.p,

SubOpt
(
π̂;x

)
≤ c · dH

H∑
h=1

Eπ?

[(
φ(sh, ah)>Λ−1

h φ(sh, ah)
)1/2 ∣∣∣ s1 = x

]
.

up to logarithm factors of d,H,K.

I Minimal-assumption guarantee: only require compliance of D.

I Oracle property: only depends on how well π? is covered - no requirement on

coverage of all trajectories.

I Data-dependent upper bound: (offline) data is what it is.

24 / 36

Instantiation of PEVI - Linear MDP
Suboptimality Upper Bound

Theorem 4.4 (JYW’20)

If D is compliant with the underlying MDP, then w.h.p,

SubOpt
(
π̂;x

)
≤ c · dH

H∑
h=1

Eπ?

[(
φ(sh, ah)>Λ−1

h φ(sh, ah)
)1/2 ∣∣∣ s1 = x

]
.

up to logarithm factors of d,H,K.

I Minimal-assumption guarantee: only require compliance of D.

I Oracle property: only depends on how well π? is covered - no requirement on

coverage of all trajectories.

I Data-dependent upper bound: (offline) data is what it is.

24 / 36

Instantiation of PEVI - Linear MDP
Suboptimality Upper Bound

Theorem 4.4 (JYW’20)

If D is compliant with the underlying MDP, then w.h.p,

SubOpt
(
π̂;x

)
≤ c · dH

H∑
h=1

Eπ?

[(
φ(sh, ah)>Λ−1

h φ(sh, ah)
)1/2 ∣∣∣ s1 = x

]
.

up to logarithm factors of d,H,K.

I Minimal-assumption guarantee: only require compliance of D.

I Oracle property: only depends on how well π? is covered - no requirement on

coverage of all trajectories.

I Data-dependent upper bound: (offline) data is what it is.

24 / 36

Instantiation of PEVI - Linear MDP
Suboptimality Upper Bound: Special Cases

I Well-explored case: ≈ uniformly good coverage of all policies.

I The suboptimality achieves
√

1/K rate if D consist of K i.i.d.

trajectories from behavior policy π̄ and

λmin

(
Eπ̄[φ(sh, ah)φ(sh, ah)>]

)
≥ c for some c > 0.

25 / 36

Instantiation of PEVI - Linear MDP
Suboptimality Upper Bound: Special Cases

I Essentially-explored case: ≈ good coverage of optimal policy.

I The suboptimality achieves
√

1/K rate if

Λh � I + c ·K · Eπ?

[
φ(sh, ah)φ(sh, ah)>

∣∣ s1 = x
]
.

Question

Is coverage of optimal π? the essential information in D?

26 / 36

Instantiation of PEVI - Linear MDP
Suboptimality Upper Bound: Special Cases

I Essentially-explored case: ≈ good coverage of optimal policy.

I The suboptimality achieves
√

1/K rate if

Λh � I + c ·K · Eπ?

[
φ(sh, ah)φ(sh, ah)>

∣∣ s1 = x
]
.

Question

Is coverage of optimal π? the essential information in D?

26 / 36

Is Pessimism Efficient?

I Minimax Lower Bounds for Linear MDP

27 / 36

Minimax Optimality of Pessimism: Linear MDP

I Answer: Coverage of optimal π? is the essential information in D.

I Pessimism is (nearly) minimax optimal in linear setting.

Minimax Optimality in Linear MDP

I Lower bound: for any offline learning algorithm Algo(·),

sup
M,D

ED

[
SubOpt

(
M, Algo(D);x

)
∑H
h=1 Eπ?

[(
φ(sh, ah)>Λ−1

h φ(sh, ah)
)1/2 ∣∣∣ s1 = x

]] ≥ c.

• Dependence on true MDP M and its optimal policy π?.
• Essential Hardness in D: how well (sample covariance) Λh covers π?.

28 / 36

Minimax Optimality of Pessimism: Linear MDP

I Answer: Coverage of optimal π? is the essential information in D.
I Pessimism is (nearly) minimax optimal in linear setting.

Minimax Optimality in Linear MDP

I Upper bound: pessimistic policy π̂ and compliant D ∼M,

SubOpt
(
M, π̂;x

)
≤ c · dH

H∑
h=1

Eπ?

[(
φ(sh, ah)>Λ−1

h φ(sh, ah)
)1/2 ∣∣∣ s1 = x

]
.

I Lower bound: for any offline learning algorithm Algo(·),

sup
M,D

ED

[
SubOpt

(
M, Algo(D);x

)
∑H
h=1 Eπ?

[(
φ(sh, ah)>Λ−1

h φ(sh, ah)
)1/2 ∣∣∣ s1 = x

]] ≥ c.

• Dependence on true MDP M and its optimal policy π?.
• Essential Hardness in D: how well (sample covariance) Λh covers π?.

28 / 36

Minimax Optimality of Pessimism: Linear MDP

I Answer: Coverage of optimal π? is the essential information in D.
I Pessimism is (nearly) minimax optimal in linear setting.

Minimax Optimality in Linear MDP

I Upper bound: pessimistic policy π̂ and compliant D ∼M,

SubOpt
(
M, π̂;x

)
≤ c · dH

H∑
h=1

Eπ?

[(
φ(sh, ah)>Λ−1

h φ(sh, ah)
)1/2 ∣∣∣ s1 = x

]
.

I Lower bound: for any offline learning algorithm Algo(·),

sup
M,D

ED

[
SubOpt

(
M, Algo(D);x

)
∑H
h=1 Eπ?

[(
φ(sh, ah)>Λ−1

h φ(sh, ah)
)1/2 ∣∣∣ s1 = x

]] ≥ c.

• Dependence on true MDP M and its optimal policy π?.
• Essential Hardness in D: how well (sample covariance) Λh covers π?.

28 / 36

Minimax Optimality of Pessimism: Linear MDP

I Answer: Coverage of optimal π? is the essential information in D.

I Pessimism is (nearly) minimax optimal in linear setting.

Minimax Optimality in Linear MDP

I Lower bound: for any offline learning algorithm Algo(·),

sup
M,D

ED

[
SubOpt

(
M, Algo(D);x

)
∑H
h=1 Eπ?

[(
φ(sh, ah)>Λ−1

h φ(sh, ah)
)1/2 ∣∣∣ s1 = x

]] ≥ c.

• Dependence on true MDP M and its optimal policy π?.
• Essential Hardness in D: how well (sample covariance) Λh covers π?.

28 / 36

Thank you!

29 / 36

Proof of Minimax Lower Bound
Construction of Hard Instance

I A subclass of linear MDP M(p1, p2, p3).

x0

x1

x2

P1(x1 |x0, bj) = pj

P1(x2 |x0, bj) = 1− pj

h ≥ 2

h ≥ 2

• Actions A = {b1, b2, . . . , bA}, states S = {x0, x1, x2}.
• Initial state s1 ≡ x0.
• Transition at the first step P1(x1 |x0, bj) = pj , pj = p3 for j ≥ 3.
• Absorbing states x1, x2, Ph(xi |xi, a) = 1 for i = 1, 2 and all a ∈ A.
• Deterministic rewards rh(x1, a) = 1 and rh(x2, a) = 0 for all a ∈ A.

I Pre-determined actions in D: take action bj for nj times.

30 / 36

Proof of Minimax Lower Bound
Modified LeCam 2-Point Argument

I Two instances M1 = M(p∗, p, p), M2 = M(p, p∗, p), p < p∗.
• Optimal policy for M1 takes b1, while optimal policy for M2 takes b2.

I Suboptimality of any policy π on the two MDPs are

SubOpt
(
M`, π;x0

)
= (p∗ − p)(H − 1)

(
1− π1(b` |x0)

)
• 2-point argument: any policy makes mistake either on M1 or on M2.

I Reduction to Testing:

max
`∈{1,2}

√
n` · ED∼M`

[
SubOpt

(
M`, Algo(D);x0

)]
≥

√
n1n2√

n1 +
√
n2
· (p∗ − p) · (H − 1)

×
(
ED∼M1

[
1− π1(b1 |x0)

]
+ ED∼M2

[
π1(b1 |x0)

])
≥

√
n1n2√

n1 +
√
n2
· (p∗ − p) · (H − 1)

(
1− TV(PD∼M1

,PD∼M2
)
)

31 / 36

Proof of Minimax Lower Bound
Modified LeCam 2-Point Argument

I Two instances M1 = M(p∗, p, p), M2 = M(p, p∗, p), p < p∗.
• Optimal policy for M1 takes b1, while optimal policy for M2 takes b2.

I Suboptimality of any policy π on the two MDPs are

SubOpt
(
M`, π;x0

)
= (p∗ − p)(H − 1)

(
1− π1(b` |x0)

)
• 2-point argument: any policy makes mistake either on M1 or on M2.

I Reduction to Testing:

max
`∈{1,2}

√
n` · ED∼M`

[
SubOpt

(
M`, Algo(D);x0

)]
≥

√
n1n2√

n1 +
√
n2
· (p∗ − p) · (H − 1)

×
(
ED∼M1

[
1− π1(b1 |x0)

]
+ ED∼M2

[
π1(b1 |x0)

])
≥

√
n1n2√

n1 +
√
n2
· (p∗ − p) · (H − 1)

(
1− TV(PD∼M1

,PD∼M2
)
)

31 / 36

Proof of Minimax Lower Bound
Modified LeCam 2-Point Argument

I Two instances M1 = M(p∗, p, p), M2 = M(p, p∗, p), p < p∗.
• Optimal policy for M1 takes b1, while optimal policy for M2 takes b2.

I Suboptimality of any policy π on the two MDPs are

SubOpt
(
M`, π;x0

)
= (p∗ − p)(H − 1)

(
1− π1(b` |x0)

)
• 2-point argument: any policy makes mistake either on M1 or on M2.

I Reduction to Testing:

max
`∈{1,2}

√
n` · ED∼M`

[
SubOpt

(
M`, Algo(D);x0

)]
≥

√
n1n2√

n1 +
√
n2
· (p∗ − p) · (H − 1)

×
(
ED∼M1

[
1− π1(b1 |x0)

]
+ ED∼M2

[
π1(b1 |x0)

])
≥

√
n1n2√

n1 +
√
n2
· (p∗ − p) · (H − 1)

(
1− TV(PD∼M1

,PD∼M2
)
)

31 / 36

Proof of Minimax Lower Bound
Modified LeCam 2-Point Argument

I Reduction to Testing:

max
`∈{1,2}

√
n` · ED∼M`

[
SubOpt

(
M`, Algo(D);x0

)]
≥ c · (H − 1),

with a careful choice of n1, n2 and p, p∗.

I At the same time, w.h.p.,

H∑
h=1

Eπ∗,`,M`

[(
φ(sh, ah)>Λ−1

h φ(sh, ah)
)1/2 ∣∣∣ s1 = x0

]
≈ (H − 1)/

√
n`.

I Final lower bound

sup
M,D

ED

[
SubOpt

(
M, Algo(D);x

)
∑H
h=1 Eπ?

[(
φ(sh, ah)>Λ−1

h φ(sh, ah)
)1/2 ∣∣∣ s1 = x

]] ≥ c.

32 / 36

Proof of Minimax Lower Bound
Modified LeCam 2-Point Argument

I Reduction to Testing:

max
`∈{1,2}

√
n` · ED∼M`

[
SubOpt

(
M`, Algo(D);x0

)]
≥ c · (H − 1),

with a careful choice of n1, n2 and p, p∗.

I At the same time, w.h.p.,

H∑
h=1

Eπ∗,`,M`

[(
φ(sh, ah)>Λ−1

h φ(sh, ah)
)1/2 ∣∣∣ s1 = x0

]
≈ (H − 1)/

√
n`.

I Final lower bound

sup
M,D

ED

[
SubOpt

(
M, Algo(D);x

)
∑H
h=1 Eπ?

[(
φ(sh, ah)>Λ−1

h φ(sh, ah)
)1/2 ∣∣∣ s1 = x

]] ≥ c.

32 / 36

Proof of Minimax Lower Bound
Modified LeCam 2-Point Argument

I Reduction to Testing:

max
`∈{1,2}

√
n` · ED∼M`

[
SubOpt

(
M`, Algo(D);x0

)]
≥ c · (H − 1),

with a careful choice of n1, n2 and p, p∗.

I At the same time, w.h.p.,

H∑
h=1

Eπ∗,`,M`

[(
φ(sh, ah)>Λ−1

h φ(sh, ah)
)1/2 ∣∣∣ s1 = x0

]
≈ (H − 1)/

√
n`.

I Final lower bound

sup
M,D

ED

[
SubOpt

(
M, Algo(D);x

)
∑H
h=1 Eπ?

[(
φ(sh, ah)>Λ−1

h φ(sh, ah)
)1/2 ∣∣∣ s1 = x

]] ≥ c.

32 / 36

Proof of Upper Bound for Linear MDP
Formula of Uncertainty Quantifier

I Bellman update BhQ̂h+1(x, a) = φ(x, a)>wh for some wh ∈ Rd.

I Ridge estimator Q̄h(x, a) = φ(x, a)>ŵh, with

ŵh = Λ−1
h

(K∑
τ=1

φ(xτh, a
τ
h) ·

(
rτh + V̂h+1(xτh+1)

))
,

where V̂h+1(x) = max
a∈A

Q̂h+1(x, a),

Λh =

K∑
τ=1

φ(xτh, a
τ
h)φ(xτh, a

τ
h)> + λ · I,

I Uncertainty quantifier chosen as

Γh(x, a) = β ·
(
φ(x, a)>Λ−1

h φ(x, a)
)1/2

,

where the constant β is to be specified.

33 / 36

Proof of Upper Bound for Linear MDP
Formula of Uncertainty Quantifier

I Bellman update BhQ̂h+1(x, a) = φ(x, a)>wh for some wh ∈ Rd.

I Ridge estimator Q̄h(x, a) = φ(x, a)>ŵh, with

ŵh = Λ−1
h

(K∑
τ=1

φ(xτh, a
τ
h) ·

(
rτh + V̂h+1(xτh+1)

))
,

where V̂h+1(x) = max
a∈A

Q̂h+1(x, a),

Λh =
K∑
τ=1

φ(xτh, a
τ
h)φ(xτh, a

τ
h)> + λ · I,

I Uncertainty quantifier chosen as

Γh(x, a) = β ·
(
φ(x, a)>Λ−1

h φ(x, a)
)1/2

,

where the constant β is to be specified.

33 / 36

Proof of Upper Bound for Linear MDP
Formula of Uncertainty Quantifier

I Bellman update BhQ̂h+1(x, a) = φ(x, a)>wh for some wh ∈ Rd.

I Ridge estimator Q̄h(x, a) = φ(x, a)>ŵh, with

ŵh = Λ−1
h

(K∑
τ=1

φ(xτh, a
τ
h) ·

(
rτh + V̂h+1(xτh+1)

))
,

where V̂h+1(x) = max
a∈A

Q̂h+1(x, a),

Λh =
K∑
τ=1

φ(xτh, a
τ
h)φ(xτh, a

τ
h)> + λ · I,

I Uncertainty quantifier chosen as

Γh(x, a) = β ·
(
φ(x, a)>Λ−1

h φ(x, a)
)1/2

,

where the constant β is to be specified.

33 / 36

Proof of Upper Bound for Linear MDP
Validity of Uncertainty Quantifier

I Validity of Γh: w.h.p. for all (x, a) and all h ∈ [H],

∣∣BhQ̂h+1(x, a)− Q̄h(x, a)
∣∣ ≤ Γh(x, a) = β ·

(
φ(x, a)>Λ−1

h φ(x, a)
)1/2

I The difference is decomposed into

(BhQ̂h+1)(x, a)− Q̄h(x, a) = φ(x, a)>(wh − ŵh)

= φ(x, a)>wh − φ(x, a)>Λ−1
h

(K∑
τ=1

φ(xτh, a
τ
h) · (BhQ̂h+1)(xτh, a

τ
h)
)

︸ ︷︷ ︸
(i)

− φ(x, a)>Λ−1
h

(K∑
τ=1

φ(xτh, a
τ
h) ·

(
rτh + V̂h+1(xτh+1)− (BhQ̂h+1)(xτh, a

τ
h)
))

︸ ︷︷ ︸
(ii)

.

34 / 36

Proof of Upper Bound for Linear MDP
Validity of Uncertainty Quantifier

I Boundedness of wh: since Q̂h+1 ∈ [0, H − h], it holds that

‖ŵh‖ ≤ H
√
Kd/λ.

I The first term bounded as∣∣(i)
∣∣ = λ ·

∣∣φ(x, a)>Λ−1
h wh

∣∣ ≤ H√dλ ·√φ(x, a)>Λ−1
h φ(x, a).

I The second term bounded as

∣∣(ii)
∣∣ ≤ ∥∥∥ K∑

τ=1

φ(xτh, a
τ
h) · ετh(V̂h+1)

∥∥∥
Λ−1
h

·
√
φ(x, a)>Λ−1

h φ(x, a)

where ετh(V) = rτh + V (xτh+1)− E
[
rh(sh, ah) + V (sh+1)

∣∣ sh = xτh, ah = aτh
]
.

35 / 36

Proof of Upper Bound for Linear MDP
Validity of Uncertainty Quantifier

I Boundedness of wh: since Q̂h+1 ∈ [0, H − h], it holds that

‖ŵh‖ ≤ H
√
Kd/λ.

I The first term bounded as∣∣(i)
∣∣ = λ ·

∣∣φ(x, a)>Λ−1
h wh

∣∣ ≤ H√dλ ·√φ(x, a)>Λ−1
h φ(x, a).

I The second term bounded as

∣∣(ii)
∣∣ ≤ ∥∥∥ K∑

τ=1

φ(xτh, a
τ
h) · ετh(V̂h+1)

∥∥∥
Λ−1
h

·
√
φ(x, a)>Λ−1

h φ(x, a)

where ετh(V) = rτh + V (xτh+1)− E
[
rh(sh, ah) + V (sh+1)

∣∣ sh = xτh, ah = aτh
]
.

35 / 36

Proof of Upper Bound for Linear MDP
Validity of Uncertainty Quantifier

I Boundedness of wh: since Q̂h+1 ∈ [0, H − h], it holds that

‖ŵh‖ ≤ H
√
Kd/λ.

I The first term bounded as∣∣(i)
∣∣ = λ ·

∣∣φ(x, a)>Λ−1
h wh

∣∣ ≤ H√dλ ·√φ(x, a)>Λ−1
h φ(x, a).

I The second term bounded as

∣∣(ii)
∣∣ ≤ ∥∥∥ K∑

τ=1

φ(xτh, a
τ
h) · ετh(V̂h+1)

∥∥∥
Λ−1
h

·
√
φ(x, a)>Λ−1

h φ(x, a)

where ετh(V) = rτh + V (xτh+1)− E
[
rh(sh, ah) + V (sh+1)

∣∣ sh = xτh, ah = aτh
]
.

35 / 36

Proof of Upper Bound for Linear MDP
Validity of Uncertainty Quantifier

I Uniform concentration:

∣∣(ii)
∣∣ ≤ sup

Vh+1∈Vh+1

∥∥∥ K∑
τ=1

φ(xτh, a
τ
h) · ετh(Vh+1)

∥∥∥
Λ−1
h

·
√
φ(x, a)>Λ−1

h φ(x, a).

I Supremum over function class Vh+1 with the form

Vh+1(x) = max
a∈A

{
min

{
φ(x, a)>θ − β ·

√
φ(x, a)>Σ−1φ(x, a), H − h

}+
}
,

for appropriately bounded θ ∈ Rd, β ∈ R and Σ ∈ Rd×d.

I The second term is bounded as∣∣(ii)
∣∣ ≤ β/2 ·√φ(x, a)>Λ−1

h φ(x, a), β = c · dH · PolyLog(d,H,K)

• Concentration of self-normalized process for a single Vh+1. (Only

compliance of D is needed for the concentration.)
• ε-covering of linear function class Vh+1 for uniform concentration.

36 / 36

Proof of Upper Bound for Linear MDP
Validity of Uncertainty Quantifier

I Uniform concentration:

∣∣(ii)
∣∣ ≤ sup

Vh+1∈Vh+1

∥∥∥ K∑
τ=1

φ(xτh, a
τ
h) · ετh(Vh+1)

∥∥∥
Λ−1
h

·
√
φ(x, a)>Λ−1

h φ(x, a).

I Supremum over function class Vh+1 with the form

Vh+1(x) = max
a∈A

{
min

{
φ(x, a)>θ − β ·

√
φ(x, a)>Σ−1φ(x, a), H − h

}+
}
,

for appropriately bounded θ ∈ Rd, β ∈ R and Σ ∈ Rd×d.

I The second term is bounded as∣∣(ii)
∣∣ ≤ β/2 ·√φ(x, a)>Λ−1

h φ(x, a), β = c · dH · PolyLog(d,H,K)

• Concentration of self-normalized process for a single Vh+1. (Only

compliance of D is needed for the concentration.)
• ε-covering of linear function class Vh+1 for uniform concentration.

36 / 36

	Problem Settings
	Episodic MDP
	Offline Policy Learning

