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Backgrounds

» Episodic MDP
» Offline Learning Protocol
» Difficulty and Epistemic Uncertainty
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Episodic MDP

state s, €S
EEEEEEES +>| Agent

action @, €A

1 reward 1, = 1,(s;,, @) € [0,1]
1 next state 5| ~ P(- | sy, a,) €S

A

Environment

» S: infinite state space. A: finite action space.
» Unknown reward function rp, : S x A — [0, 1].
» Unknown transition kernel P, (- |z, a) € A(S).

» Finite horizon H: terminate when h = H.
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Episodic MDP

$1 ) 53 SH
P(-|si,a) P(-|5y,a) P(-|53,a)
m(sy) my(s2) m3(s3) 7y(Sp) Policy
al a2 a?’ aH Action
r(sy, @) sy @) 7(s3,a3) r(syay) Reward

[E[rl + np + (g 4+t rH]=J(7[)

» Policy: m = {mn}theim: S — A(A), an ~ mh(sh).
> Expected total reward: J(m,z) = ]EW[Zthl ry|s1 =z € [0, H].

» Optimal policy: 7*(-) = argmax_ J(m, ).
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Episodic MDP

Dynamic Programming and Bellman Equation

> 7* is greedy w.r.t. optimal value functions Q* = {Q} }ne(m-
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Episodic MDP

Dynamic Programming and Bellman Equation
» 7* is greedy w.r.t. optimal value functions Q* = {Q} }ne(m-

mh (x) = argmax Qj (z,a), Vse€ S,
acA

Qi (z,a) = ryp(z,a) + Esh+1~ﬂ>[g}2§ Q;+1(5h+17a/) | Sp = T,ap = a]

Bellman operator By, : ]Bh,Q}*L+1

» Bellman Equation

Q= BhQZH, Q;I+1 =0.

» RL with function approximation:
Function class F = {f:8 x A — R} approximates Q7.

Linear functions, Neural networks, RKHS...
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Offline Policy Learning

Learn from Given Datasets

Offline Agent

~
~
.~

9: arbitrary trajectories AN

1
arbitrary action 1
24

.
.

&=

Environment

» Offline Data: collected a priori.
> Arbitrary trajectories: actions aj by an offline agent (unknown rule).

» No further interactions with MDP.
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Offline Policy Learning
Learn from Given Datasets

Offline Agent
-
" -~ N
9: arbitrary trajectories .
Data & v s
arbitrary action"
Collected a priori Lt
- e -
Environment

» Offline Data: collected a priori.
> Arbitrary trajectories: actions aj by an offline agent (unknown rule).
» No further interactions with MDP.

» Learning objective: performance of the learned policy

SubOpt (7, 2) = J(n*, ) — J(7, x)

3

where T =OfflineRL(D, F), z € S.
6/36



Offline Policy Learning
Naive Value Iterations

» By Bellman equation: approximate dynamic programming.
Naive Value lterations

* End of Episode: Q41 < 0.

® Dynamic Programming: h=H,H —1,...,1,
B Estimate: Qj, + Regress(Bh@htl,D,]:).
m Optimize: 7y (x) < argmax, ¢ 4 Qp(z,a).
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Offline Policy Learning
Naive Value Iterations

» By Bellman equation: approximate dynamic programming.
Naive Value lterations

* End of Episode: Q41 < 0.

® Dynamic Programming: h=H,H —1,...,1,
B Estimate: Qj, + Regress(IBh@htl,D,}').
B Optimize: 7, () < argmax,c 4 Qn(x,a).

» Hope for ...
® Good estimation: @h ~ Q7.

® Good optimization:
argmax @h (x,a) = argmax Q; (z,a).
a a
® Good actual performance:

J(7) ~ J(1*).
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Why May Naive Value Iterations Fail?
An Example: Multi-Arm Bandit

» Gaussian bandits
Ri| 4,—q ~ N(r(a),1), a€[K]arms.

» a is pulled N(a) times in the pre-collected dataset D = {(A;, R;)}.
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Why May Naive Value Iterations Fail?
An Example: Multi-Arm Bandit

» For small N(a), a bad arm a might appear good by chance.

value

#() = argmax, (), 7()) 4
m(-) = argmax_ (u(-), 7(-)) A

. t Aiaa)
sy
i Ailaz)
! : g r

action

1 Hlaga))

N(aja))
small
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Why May Naive Value Iterations Fail?
Epistemic Uncertainty

» Policy 7 insufficiently covered by dataset D
= Large uncertainty in our knowledge about a policy 7.
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» Policy 7 insufficiently covered by dataset D
= Large uncertainty in our knowledge about a policy 7.

» Epistemic Uncertainty spuriously correlates with decision-making
(greedy step). Roughly,

J(7) = J(argmax 7(7?))

T

J might be far from .J for some 7.
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Why May Naive Value Iterations Fail?
Epistemic Uncertainty

» Ruined if a bad 7 with large uncertainty appears to be good!

» No further interactions with MDP =- unable to reduce uncertainty.

» Uniform coverage for all policies? Too strong & unrealistic.
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Why May Naive Value Iterations Fail?
Epistemic Uncertainty

Question

Is it possible to design a provably efficient algorithm for
offline RL under minimal assumptions on the dataset?
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Why May Naive Value Iterations Fail?
Epistemic Uncertainty

Question

Is it possible to design a provably efficient algorithm for
offline RL under minimal assumptions on the dataset?

» Qur solution by Pessimism: penalize large epistemic uncertainties.

® High estimated value, high uncertainty ®
® High estimated value, low uncertainty
® Good estimated value, low uncertainty
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A Solution:
Pessimism for Offline Learning

» Pessimistic Value lteration
» Why Pessimism Helps
» PEVI for Linear MDP

13/36



Pessimism for Offline Learning
Pessimism Principle

» Empirical success in practice:
® Pessimistic model-based [Yu et al. (2020); Kidambi et al. (2020)]
® Pessimistic value-based [Kumar et al. (2020)]

» In theory:

® Regularized fitted Q-iterations [Liu et al. (2020)]: restrict policy class to
be close to behavior policy.
® Importance of Pessimism [Buckman et al. (2020)]
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Pessimism for Offline Learning
Pessimism Principle

» Empirical success in practice:

® Pessimistic model-based [Yu et al. (2020); Kidambi et al. (2020)]
® Pessimistic value-based [Kumar et al. (2020)]

» In theory:

® Regularized fitted Q-iterations [Liu et al. (2020)]: restrict policy class to
be close to behavior policy.

® Importance of Pessimism [Buckman et al. (2020)]

» This work: Pessimistic Value Iteration.

® A principled framework for pessimism in value iterations.
® No restriction on policy class and coverage of dataset.
® Optimality of pessimism in the sense of information theory.
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Pessimism for Offline Learning
General Algorithm: Pessimistic Value Iteration
Algorithm: Pessimistic Value Iterations (General Form)

» Estimate: Q) « Regress(Bh@hH,D,}').

) o,
IBth+1
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General Algorithm: Pessimistic Value Iteration
Algorithm: Pessimistic Value Iterations (General Form)

» Estimate: Q) « Regress(Bh@hH,D,}').

» Uncertainty quantification (UQ): w.h.p.

|Q), — BrQni1)| <Tw, Vhe[H]

A /_r‘:/_\gh
IBth+1
o
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Pessimism for Offline Learning
General Algorithm: Pessimistic Value Iteration

Algorithm: Pessimistic Value lterations (General Form)

» Estimate: @}, « Regress(BthH,D,}').
» Uncertainty quantification (UQ): w.h.p. |@h — (Bh@h+1)| <Ty

» Construct pessimistic value function

~ —_—

Qn(z,a) = Qp(z,a) —T'h(z,a)
VI penalty
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Pessimism for Offline Learning
General Algorithm: Pessimistic Value Iteration

Algorithm: Pessimistic Value Iterations (General Form)

» Estimate: Q) « Regress(Bh@hH,D,}').

» Uncertainty quantification (UQ): w.h.p.
1@ — (Bh@h+1)| <Tw, VhelH].

» Construct pessimistic value function

~

Qh,(xa a’) - @h(xa CL) 71—‘}7,('753 a)
——— —— —
VI penalty

» Optimize: 7y (z) = argmax,¢ 4 @h(x,a).
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Why Pessimism Helps?
Boundedness of Evaluation Error!

/—r__/_\ 0, +2I,
I, Qh

!Adapted from Lemma 5.1 in (JYW'20)
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/—r__/_\ 0;,+ 2T,
I, Qh

» Define the model evaluation error

~

un(z,a) = (BuQui1)(z,a) — Qnl, a).

!Adapted from Lemma 5.1 in (JYW'20)
17/36



Why Pessimism Helps?
Boundedness of Evaluation Error!

/—r__/_\ 0;,+ 2T,
I, Qh

» Define the model evaluation error

~

Lh(xa a) - (]Bth+1)(x7 a’) - Qh(xa CL).
» By pessimistic construction, the model evaluation error satisfy

ByQnt1 € [@h, Qn + 2]
= 0<u,(sn,an) < 2T (sp, an).

!Adapted from Lemma 5.1 in (JYW'20)
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Why Pessimism Helps?
Decomposition of Suboptimality?

» We have the decomposition of suboptimality

H

SubOpt(7; x) Z L;,(sh,ah) | 51 = x + Z Ex L}, (sh,ap) | 51 = :v]
h=1 h=1

(i): Spurious Correlation (ii): Intrinsic Uncertainty

H
+ > B [(Qn(sny )y i (I sn) = Fnl-[sn))a | s1 = 2] .

h=1

(iii): Optimization Error

?Adapted from Lemma 3.1 in (JYW'20)
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Why Pessimism Helps?
Suboptimality Upper Bound 3

» By pessimistic construction, the model evaluation error satisfy
0 < tn(sn,an) < 2Tk (sn, an).

» (i) spurious correlation is always non-positive

H

— Z]E; [Ah(sh,ah) f $1 = m} <0.
h=1

*Adapted from Theorem 4.2 in (JYW'20)
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Why Pessimism Helps?
Suboptimality Upper Bound 3

» (i) spurious correlation is always non-positive

» Greedy policy ensures (iii) optimization error is always non-positive

ZE (@n(sny )y (- sn) = Fn(- | sn))a |51 = 2] <0.

*Adapted from Theorem 4.2 in (JYW'20)
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Why Pessimism Helps?
Suboptimality Upper Bound 3

» (i) spurious correlation is always non-positive
» Greedy policy ensures (iii) optimization error is always non-positive

» A clean suboptimality bound

H
SubOpt(7; x) < ZE“* [Lh(s;“ah) | 51 = x]
h=1

<2ZE Fh ShyAhp |$1—Jf:|

*Adapted from Theorem 4.2 in (JYW'20)
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Why Pessimism Helps?
Suboptimality Upper Bound 3

» (i) spurious correlation is always non-positive
» Greedy policy ensures (iii) optimization error is always non-positive

» A clean suboptimality bound

H
SubOpt(7; x) Z Fh (Sn,an) |sl = x]

® Only depends on the trajectory of 7*
® Pessimism eliminates spurious correlation.

*Adapted from Theorem 4.2 in (JYW'20)
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Why Pessimism Helps?
Suboptimality Upper Bound 3

» (i) spurious correlation is always non-positive
» Greedy policy ensures (iii) optimization error is always non-positive

» A clean suboptimality bound

H
SubOpt(7; x) Z Fh (Sn,an) |sl = x]

® Only depends on the trajectory of 7*
® Pessimism eliminates spurious correlation.

Question

How to construct the uncertainty quantifier I';,?

*Adapted from Theorem 4.2 in (JYW'20)
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Instantiation of PEVI
Warm-up: i.i.d. Tabular Case

» Assume D consists of K i.i.d. trajectories from behavior policy 7°.

» Assume concentrability coefficient

*
sup Ll(x’a) < K*.

z,a,h Vil; (.Z‘, a)
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vi(z,a)

sup < K.

z,a,h V}l; (.17, a)
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Instantiation of PEVI
Warm-up: i.i.d. Tabular Case

» Assume D consists of K i.i.d. trajectories from behavior policy 7°.

» Assume concentrability coefficient

*
sup M < K.
z,a,h yh(x,a)

» Uncertainty quantifier
Tp(z,a) o< Ny(z,a)"/?
» The PEVI algorithm gives

SubOpt(7;z) < VS2A - H*\/k* /K.
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Instantiation of PEVI
Linear MDP

Definition (Linear MDP)

We say an episodic MDP (S, A, H,IP,r) is a linear MDP with a known
feature map ¢ : S x A — RY if there exist d unknown (signed) measures

= (MS), . ,,ufld)) over S and an unknown vector 6;, € R? such that

Ph(z/ |‘Ta a) = <¢(I’ a),uh(x'»,

E[rh(sh,an) | sn = @, an = a] = (¢(z,a),0p)

for all (z,a,2') € S x A x S at each step h € [H]. Here we assume
|p(z,a)|| <1 for all (z,a) € S x A and max{||ux(S)||, |6x]]} < Vd at
each step h € [H], where [|pn(S)|| = [s |lpn ()] da.

> Linearity of Bellman update: B, Q.1 = ¢ ' 0, for some 6, € R%.
» Linear function approximation F = {fg(x,a) = ¢(z,a) 0, § € R4}.
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Instantiation of PEVI
Linear MDP

Algorithm: PEVI for Linear MDP

» Estimate: Q,(7,a) = ¢(x,a) ' 0y, via ridge regression.
» Uncertainty quantification

1/2

Typ(z,a) < dH - (ng(x,a)TA,:lqﬁ(x,a)) ,

where Ay, is the augmented sample covariance matrix of ¢(sp, ap).

» Pessimistic value function

-~

Qn(z,a) = ¢(x, a)Té\h —c-dH - (qS(z,a)TAglgb(x, a))1/2

» Optimize: 7y (z) = argmax, ¢ 4 @h(x,a).

22/36



Instantiation of PEVI - Linear MDP

Compliance Assumption

Assumption: Compliance

Let Pp be the joint distribution of the dataset D = {(z7,aj}, T}C)}fh}il

We say D is compliant with an MDP (S, A, H, P, r) if

]P)D(Tg = T/a‘r;;-i-l = xl | {(l’i, ai)};:h {(Tiu ‘riz-i-l) ;;11)
P

= (Th = 7"I,Sh-s-l = \ Sp = Xp,ap = a;)

for all v/ € [0,1], ' € S, h € [H], T € [K]. Here P is taken with
respect to the underlying MDP.

» Only require that D evolves according to the MDP.

» Minimal assumptions on actions aj: allow for arbitrarily collected
data.

® j.i.d. trajectories from a behavior policy v/
® sequentially adjusted actions a] € o({z]_,,7}j<r) v
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Instantiation of PEVI - Linear MDP
Suboptimality Upper Bound

Theorem 4.4 (JYW'20)
If D is compliant with the underlying MDP, then w.h.p,

H
SubOpt(7;z) < c-dH ZEﬁ* [(gb(sh,ah)TA’:1¢(sh,ah))l/2 ‘51 = m]
h=1

up to logarithm factors of d, H, K.
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Theorem 4.4 (JYW'20)
If D is compliant with the underlying MDP, then w.h.p,

H
SubOpt(7;z) < c-dH ZEﬁ* [(gb(sh,ah)TA;1¢(sh,ah))l/2 ‘51 = m]
h=1

up to logarithm factors of d, H, K.
»  Minimal-assumption guarantee: only require compliance of D.

> Oracle property: only depends on how well 7* is covered - no requirement on
coverage of all trajectories.
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Instantiation of PEVI - Linear MDP
Suboptimality Upper Bound

Theorem 4.4 (JYW'20)
If D is compliant with the underlying MDP, then w.h.p,

H
SubOpt(ﬁ; x) <c-dH Z E [((j)(sh, ah)TA;1¢(sh, ah))l/Q ‘ s1 = m]
h=1
up to logarithm factors of d, H, K.
Minimal-assumption guarantee: only require compliance of D.
> Oracle property: only depends on how well 7* is covered - no requirement on

coverage of all trajectories.

> Data-dependent upper bound: (offline) data is what it is.
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Instantiation of PEVI - Linear MDP
Suboptimality Upper Bound: Special Cases

» Well-explored case: = uniformly good coverage of all policies.

» The suboptimality achieves \/1/K rate if D consist of K i.i.d.
trajectories from behavior policy 7 and

Amin (E[@(sh, an)d(sn,an)']) > ¢ for some ¢ > 0.
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Instantiation of PEVI - Linear MDP
Suboptimality Upper Bound: Special Cases

» Essentially-explored case: = good coverage of optimal policy.

» The suboptimality achieves \/1/K rate if

Ap=I+4c- K- -E;« [qb(sh,ah)qzﬁ(sh,ah)T | 81 = m]
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Instantiation of PEVI - Linear MDP
Suboptimality Upper Bound: Special Cases

» Essentially-explored case: = good coverage of optimal policy.

» The suboptimality achieves \/1/K rate if

Ap=I+4c- K- -E;« [qb(sh,ah)qﬁ(sh,ah)T | 81 = m]

Question

Is coverage of optimal 7* the essential information in D?
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Is Pessimism Efficient?

» Minimax Lower Bounds for Linear MDP
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Minimax Optimality of Pessimism: Linear MDP

*

» Answer: Coverage of optimal 7* is the essential information in D.

» Pessimism is (nearly) minimax optimal in linear setting.
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Minimax Optimality of Pessimism: Linear MDP

» Answer: Coverage of optimal 7* is the essential information in D.
» Pessimism is (nearly) minimax optimal in linear setting.

Minimax Optimality in Linear MDP

» Upper bound: pessimistic policy 7 and compliant D ~ M,

H
SubOpt (M, 7;2) < c-dH Y B [((ﬁ(sh,ah)TA;ld)(sh, ah))1/2 ‘ o1 = az]
h=1
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Minimax Optimality of Pessimism: Linear MDP

» Answer: Coverage of optimal 7* is the essential information in D.
> Pessimism is (nearly) minimax optimal in linear setting.

Minimax Optimality in Linear MDP

» Upper bound: pessimistic policy 7 and compliant D ~ M,

H
SubOpt(M,%; :Jc) <c-dH Z E [(‘b(sh,ah)TA;1¢>(Sh’ah))1/2 ‘ 51 = :1:]
h=1

» Lower bound: for any offline learning algorithm Algo(-),

E SubOpt (M, Algo(D); x) N
/31% v SH R [(¢(9 TA Lé(s 1/2 _ =<
D h=1 &m* < h?a’h) h ¢(5h7 a’h)) 51 =2
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Minimax Optimality of Pessimism: Linear MDP

» Answer: Coverage of optimal 7* is the essential information in D.

» Pessimism is (nearly) minimax optimal in linear setting.

Minimax Optimality in Linear MDP

» Lower bound: for any offline learning algorithm Algo(-),

> c.

SubOpt(M,Algo(D); :c)
sup Ep o T 172 -
PMf® h=1 Ex [(¢(Sh’ah) Ay #(sh, ah)) ‘ s1 = 33]

® Dependence on true MDP M and its optimal policy 7*.
® Essential Hardness in D: how well (sample covariance) A} covers 7*.
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Thank you!

29/36



Proof of Minimax Lower Bound
Construction of Hard Instance

» A subclass of linear MDP M (p1,p2, p3).

Actions A = {b1,b2,...,ba}, states S = {wo,z1,z2}.

Initial state s1 = xg.

Transition at the first step P1(x1 |x0,bj) =p;, p; = p3 for j > 3.
Absorbing states x1,z2, Py (z;|zi,a) =1 fori=1,2 and all a € A.
Deterministic rewards 7, (z1,a) = 1 and rp(z2,a) =0 for all a € A.

» Pre-determined actions in D: take action b; for n; times.
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Proof of Minimax Lower Bound
Modified LeCam 2-Point Argument

» Two instances My = M(p*,p,p), Ma = M(p,p*,p), p < p*.
® Optimal policy for M takes b1, while optimal policy for Mo takes bs.

31/36



Proof of Minimax Lower Bound
Modified LeCam 2-Point Argument

» Two instances My = M(p*,p,p), Ma = M(p,p*,p), p < p*.
® Optimal policy for M takes b1, while optimal policy for Mo takes bs.

» Suboptimality of any policy 7 on the two MDPs are
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Modified LeCam 2-Point Argument

» Two instances My = M(p*,p,p), Ma = M(p,p*,p), p < p*.
® Optimal policy for M takes b1, while optimal policy for Mo takes bs.

» Suboptimality of any policy 7 on the two MDPs are
SubOpt (M, m520) = (p* — p)(H — 1)(1 — m1(be | 20))

® 2 point argument: any policy makes mistake either on M or on Mas.

» Reduction to Testing:

zg{l?,);} Ve -Eponm, [SUbOPt(Mb Algo(D); zo)]

- Vning

z Vit v
X <ED~M1 [1 —m1(b1 \a:())] +Epom, [7r1(b1 |xo)])

- J/ninsg

T N1+ /na

(" —p)- (H-1)

(0" =p) - (H =D (1= TV(Poop,, Poons) )
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Proof of Minimax Lower Bound
Modified LeCam 2-Point Argument

» Reduction to Testing:

. . >c. _
Eél%zli?;} Ve -Epanm, [SubOpt(Mg,Algo(D),:po)] >c-(H—-1),

with a careful choice of ny,ns and p, p*.
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Proof of Minimax Lower Bound
Modified LeCam 2-Point Argument

» Reduction to Testing:

. . >c. _
Eél%zli?;} Ve -Eponm, [SubOpt(Mz,Algo(D),:po)] >c-(H—-1),

with a careful choice of ny,ns and p, p*.

» At the same time, w.h.p.,
H

S Bt g, [ (B 00) AL Bl 0n)) 2 51 = o] & (H 1)/ /e

h=1

» Final lower bound

>c.

SubOpt(M,Algo(D); J:)
o B | TA L 2], _
g h=1 Erx |:(¢(S}L7ah) A}L d)(sh,v ah)) ‘ S1 = I]
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Proof of Upper Bound for Linear MDP

Formula of Uncertainty Quantifier

» Bellman update B;L@hﬂ(az,a) = ¢(x,a) "wy, for some wy, € R%.
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Formula of Uncertainty Quantifier

» Bellman update B;L@hﬂ(a:,a) = ¢(x,a) "wy, for some wy, € R%.
> Ridge estimator Qp,(7,a) = ¢(x,a) Wy, with

K

@ = A1 (Y daqan) - (7 + Vhaa(740))).
T=1

where \A/h+1(3:) = meaj( @h+1(170),

K
Ap = d(xh,ap)b(xh,ap) T + A1,
=1

33/36



Proof of Upper Bound for Linear MDP

Formula of Uncertainty Quantifier

» Bellman update B;L@hﬂ(a:,a) = ¢(x,a) "wy, for some wy, € R%.
> Ridge estimator Qp,(7,a) = ¢(x,a) Wy, with

K
@ =0, (X e ap) - (7 + Vara (w74)) ),
T=1
where \A/h+1(3:) = meaj( @h+1(170),

K
Ap = d(xh,ap)b(xh,ap) T + A1,
=1

» Uncertainty quantifier chosen as
Th(z,a) =B+ (¢(z,0) A (@, )2,

where the constant (3 is to be specified.
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Proof of Upper Bound for Linear MDP
Validity of Uncertainty Quantifier

» Validity of I';,: w.h.p. for all (z,a) and all h € [H],
[BiQn+1(w,0) - Qn(z,a)| < Th(w,a) = 8- (¢(x,0) A, b(z,a) "/
» The difference is decomposed into
(BaQn+1)(x, a) — Qn(z,a) = ¢(z,a) " (wy, — D)

= 6(@,0)Twn — $la,a) Ay (th,ah (B Qn1) (e o) )

0}

K
— 0@, A (3 #(ah,af) - (7 + Vs (@7 40) — (BaQnrn) (@, ap)) ) -

T=1

(if)
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Proof of Upper Bound for Linear MDP
Validity of Uncertainty Quantifier

» Boundedness of w),: since @h+1 € [0, H — h), it holds that

@l < H/Kd/x.
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Validity of Uncertainty Quantifier

» Boundedness of wy,: since @h+1 € [0, H — h), it holds that

@l < H/Kd/x.

» The first term bounded as

|) = A+ |o(z,a) TA, oy | < HVAX -1/ ¢(xz,a) TA;, M d(z, a).
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Proof of Upper Bound for Linear MDP
Validity of Uncertainty Quantifier

» Boundedness of wy,: since @h+1 € [0, H — h), it holds that

@l < H/Kd/x.

» The first term bounded as

|) = A+ |o(z,a) TA, oy | < HVAX -1/ ¢(xz,a) TA;, M d(z, a).

» The second term bounded as

)] < | S btefah)- G|yl @) T AL (e, a)
=1 h

where €; (V) =1} + V(:c;+1) — E[rh(sh, ap) +V(sh+1) ‘ Sp = xp,ap = a;].
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Proof of Upper Bound for Linear MDP
Validity of Uncertainty Quantifier

» Uniform concentration:

K

()< sup
Vh41€Vhy1 V' T

oafap) - (Vs | - /0@ 0)TA 6l a).
1 h
» Supremum over function class V11 with the form
Vi () = max{min{¢(,a) "0 = 5 \/¢(e,a) = (w,a), H — h} " |,

for appropriately bounded 6 € R?, 5 € R and ¥ € R4*4,
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Proof of Upper Bound for Linear MDP
Validity of Uncertainty Quantifier

» Uniform concentration:

K
YIPS 7'7 Y. T (V5 . , TA*I , .
@< sup \;¢<xh @) FV] 1 Vo T o a)

» Supremum over function class V11 with the form
Vi () = max{min{¢(,a) "0 = 5 \/¢(e,a) = (w,a), H — h} " |,
for appropriately bounded 6 € R?, 5 € R and ¥ € R4*4,

» The second term is bounded as

|(ii)| < B/2-\/dlx,a)TA, ‘b(x,a), B=c-dH - PolyLog(d, H,K)

® Concentration of self-normalized process for a single V1. (Only
compliance of D is needed for the concentration.)
® c-covering of linear function class Vj, 41 for uniform concentration.
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