Model-free selective inference and applications to drug discovery

Based on join work with Emmanuel Candès, Jure Leskovec, Genentech

Ying Jin

Collaborators

Emmanuel Candès Stanford Stats & Math

Applied work in collaboration with:

Jure Leskovec Stanford CS

Genentech ML team

Motivation: accelerating drug discovery

Can we make drug discovery more efficient?

Scientific discovery in the age of Al

Shortcuts to Simulation: How Deep Learning Accelerates Virtual Screening for Drug Discovery

May 11, 2020 🕚 14 min read

[DZone.com]

Promise of AI: *low-cost & fast* drug discovery!

FORBES > INNOVATION

Generative AI Drugs Are Coming

Steve Nouri Forbes Councils Member Forbes Technology Council COUNCIL POST | Membership (Fee-Based)

Sep 5, 2023, 07:45am EDT

[forbes.com]

[mckinsey.com]

This talk: in search of "interesting/large outcomes"

Want drugs with high binding affinities to a disease target

Which drugs are sufficiently active?

This talk: in search of "interesting/large outcomes"

Want drugs with high binding affinities to a disease target

Which drugs are sufficiently active?

Experiments, clinical trials, ...

This talk: in search of "large outcomes"

[Koutsoukas et al., 2017; Vamathevan et al., 2019; Dara et al., 2021]

Traditional approach: evaluate unknown outcomes

Al-assisted approach: predict unknown outcomes!

Problem setup

Any pre-trained prediction model $\hat{\mu}: \mathcal{X} \to \mathcal{Y}$ (independent of training and test data)

- X physical/chemical feature/amino acids of the drug
- Y binding affinity $\rightarrow Y \in \{0,1\}$: whether the drug binds to the target $\sim Y \in \mathbb{R}$: how well the drug binds to the target
- Training data $\{(X_i, Y_i)\}_{i=1}^n$ (screened drugs)
- Test samples $\{(X_{n+i}, Y_{n+i})\}_{i=1}^{m}$ with unknown $\{Y_{n+i}\}_{i=1}^{m}$ (new drugs)

Goal: find large outcomes $Y_{n+j} > c_{n+j}$ without too many errors

 \sim user-specified thresholds c_{n+i} to become 'interesting'

Other applications

material design talent identification targeted marketing

 $\bullet \bullet \bullet$

Microsoft Unveils Predictive Targeting, Al-Based Advertising Tool

Microsoft unveils Predictive Targeting, an AI-based advertising tool enhancing conversion rates, streamlining targeting, and offering flexible audience strategies.

Goal: find large outcomes $Y_{n+i} > c_{n+i}$ without too many errors

ARTICLE • AI. MATH. AND DATA

Google DeepMind Adds Nearly 400,000 New Compounds to **Berkeley Lab's Materials Project**

By Lauren Biron November 29, 2023

[newscenter.lbl.gov]

HIRING RESOURCES 9 MIN READ

How Good Machine Learning in Recruitment **Can Radically Transform Your Hiring**

[VerVoe.com]

Challenges

Which drugs are sufficiently active?

Quantifying uncertainty in point predictions

Work for any prediction model No modeling assumptions

The importance of reliability

What if AI gives false leads? Failure of the promise!

The importance of reliability

Can we draw discoveries with few mistakes?

Conformal prediction: model-free uncertainty quantification

~ Covers 95% of outcomes no matter prediction model

Validity of conformal prediction intervals (PIs) [Vovk et al., 1999] $\mathbb{P}\left(Y_{n+1} \in \hat{C}(X_{n+1})\right) \ge 95\%$

Challenges

Which drugs are sufficiently active?

Uncertainty quantification \checkmark

Model-free

Which drugs are sufficiently active?

Uncertainty quantification

Model-free \checkmark

Can we use them to find interesting instances (drugs)?

"Selective" downstream use of predictive inference

Drug discovery [Svenssen et al., 2017, JCIM]

[...] **compounds to further screen** can be derived from [...] **single class predictions** found at the user-defined confidence level.

Marketing [redfield.ai/conformal-prediction-for-business]

[...] interval indicates **strong demand**, the company can **invest more** in advertising [...] Conversely, [...] suggests **weaker demand**, they can focus on **cost-saving** initiatives.

Disease diagnosis [Olsson et al., 2022, Nature Communications]

If the prediction region associated with a point prediction is **too large** [...], the corresponding prediction **can be flagged** for human intervention.

"Selective" downstream use of predictive inference

be derived from [] single cl	ass predictions found
ractice:	
rediction intervals	
\downarrow	
eresting" intervals	e in advertising [] aving initiatives.
\downarrow	
tion bias problem	

If the prediction region associated with a point prediction is **too large** [...], the corresponding prediction **can be flagged** for human intervention.

Evidence in a real drug discovery dataset

Dark: perfect marginal coverage

y = x

Evidence in a real drug discovery dataset

Dark: perfect marginal miscoverage y = x **Orange**: miscoverage of those $\hat{C}(X_{n+j}) > c_{n+j}$

Conformal prediction for drug discovery

[Norinder et al., 2014, Svensson et al., 2017, Wang et al., 2022]

12

Evidence in a real drug discovery dataset

1% nominal error, yet >30% error after selection!

This is the winner's curse [Soric, 1989] Inspired a whole field of research: Selective Inference [Benjamini and Yekutieli, 2005, Berk et al., 2013, Taylor et al., 2014, Fithian et al., 2014; Storey et al, 2003]

Dark: perfect marginal miscoverage **Orange**: miscoverage of those $\hat{C}(X_{n+j}) > c_{n+j}$ y = x

Conformal prediction for drug discovery

[Norinder et al., 2014, Svensson et al., 2017, Wang et al., 2022]

12

Our proposal: select with guarantees

Find "actionable instances" while controlling fraction of false positive (FDR)

[Benjamini and Hochberg, 1995]

- Control of FDR implies
 - Most Al-powered decisions are correct
 - Resource allocation is efficient

Extremely popular notion of error control

Controlling the false discovery rate: a practical and powerful approach to multiple testing

Yoav Benjamini, Yosef Hochberg Authors

 $FDR = \mathbb{E}[FDP], FDP = \frac{\#\{false \ discoveries\}}{\pi}$ #{selected instances}

> Drugs ~ 90% active Customers ~ 90% responding Patients ~ 90% benefiting LLM outputs ~ 90% trustworthy

> > Total citations

Cited by 113748

Part I: Exchangeable/i.i.d. data

Jin, Y. and Candès, E.J., 2023.

- Selection by prediction with conformal p-values.
- Journal of Machine Learning Research, 24(244), pp.1-41.

Exchangeability: for any permutation π of $\{1, ..., n + 1\}$, $\mathbb{P}(V_{\pi(1)} = z_1, \dots, V_{\pi(n+1)} = v_{n+1}) \equiv \mathbb{P}(V_1 = v_1, \dots, V_{n+1} = v_{n+1})$

Model-free selective inference: key strategy

Conformal p-values

- Monotone conformity score $y \le y' \Rightarrow V(x, y) \le V(x, y')$
 - One-sided residual $V(x, y) = y \hat{\mu}(x)$ [Vovk et al., 2005, Romano et al., 2021]
 - Standardized residual $V(x, y) = [y \hat{\mu}(x)]/\hat{\sigma}(x)$ [Lei et al., 2018]
- Training scores $V_i = V(X_i, Y_i)$, i = 1, 2, ..., n
- Test scores $\hat{V}_{n+i} = V(X_{n+i}, c_{n+i}), j = 1, 2, ..., m$
- Compute p-values

$$p_{j} = \frac{\sum_{i=1}^{n} \mathbf{1} \{ V_{i} < \hat{V}_{n+j} \}}{n+1}$$

 \approx rank of \hat{V}_{n+i} among training scores $\{V_i\}_{i=1}^n$

P-values \Leftrightarrow prediction intervals

• With monotone scores, p_j is smallest α such that $\hat{C}(X_{n+j}; \alpha)$ entirely lies above c_{n+j} Conformal PI with $(1 - \alpha)$ coverage

17

Setting confidence strength via BH

- Rank test samples by p-values / confidence
- Determine a "data-dependent" threshold of p-values

FDR target Conformal p-valu
BH(
$$q$$
; p_1 , ..., p_m)
Benjamini-Hochberg procedure

Model-free FDR control

Theorem (J. and Candès, 2023) $\mathsf{FDR} = \mathbb{E}\left[\frac{\sum_{j=1}^{m} \mathbf{1}\{j \in \mathcal{R}, \mathbb{I}\}}{1 \lor |\mathcal{I}|}\right]$

- Arbitrary prediction model \mathbf{V}
- Arbitrary data distribution
- Random thresholds
- Dependent data points V

For i.i.d. data and any monotone V, conformal selection at nominal level $q \in (0,1)$ yields

$$\frac{Y_{n+j} \le c_{n+j}}{\Re} \le q$$

Link to complete version

Far from classical theory... Why validity?

Why can we ensure model-free error control?

Statistical inference theory: multiple testing for random hypotheses

1. Valid p-values: Well-calibrated for random hypotheses

$$\mathbb{P}(p_j \le t, Y_{n+j} \le c_{n+j})$$

2. "Multiple testing friendly": P-values are positively dependent

- $t_i) \leq t, \quad \forall t \in [0,1]$
 - ~ Valid p-values from rank test
- - ~ 'Good' for BH [Benjamini and Yekutieli, 2001]

Link to positive dependence

How to choose the score?

Full flexibility: encode preference in choosing V \sim procedure selects small $V(X_{n+j}, c_{n+j})$

- If the thresholds are constant $c_{n+i} \equiv c$, a powerful choice is 'clipped' score $V(x, y) = \begin{cases} +\infty, & \text{if } y > c \\ c - \hat{\mu}(x), & \text{if } y \le c \end{cases}$
 - Idea: push training scores $\{V_i\}$ to largest possible → strictly smaller p-values → better power

For binary outcome with c = 0, powerful score should be monotone in $\mathbb{P}(Y = 1 \mid X = x)$

Real data: finding active drugs for HIV with FDR control

- $Y \in \{0,1\}$: whether the drug interacts with the disease
- $n_{tot} = 41127$ in total, 6:2:2 split
- Very imbalanced data: only **3%** drugs are active
- Goal: select subset with $\approx \{90, 80, 50\}$ % active drugs

	Realized FDR			Power			$ \mathcal{R} $		
FDR level	0.1	0.2	0.5	0.1	0.2	0.5	0.1	0.2	0.5
Clipped score	0.0957	0.196	0.495	0.0788	0.174	0.410	26.5	64.2	240
Score $V(x, y) = y - \hat{\mu}(x)$	0.0989	0.196	0.494	0.0766	0.174	0.410	25.8	64.4	239
Naive CP	0.8315	0.8976	0.9465						

Real data: finding highly-binding drug-target pairs

- DAVIS dataset, $Y \in \mathbb{R}$ continuous binding affinities, X feature for drug-target pairs
- $n_{tot} = 30060$ drug-target pairs in total, 2:2:6 split
- $c_{n+i} = \{0.7, 0.8, 0.9\}$ -th quantile of affinities for training pairs with same binding target as j

$$V(x, y) =$$

 $y - \hat{\mu}(x)$ Powerful score 🗎 BH_res 🖨 BH_clip

Real data: finding highly-binding drug-target pairs

- DAVIS dataset, $Y \in \mathbb{R}$ continuous binding affinities, X feature for drug-target pairs
- $n_{tot} = 30060$ drug-target pairs in total, 2:2:6 split
- $c_{n+i} = \{0.7, 0.8, 0.9\}$ -th quantile of affinities for training pairs with same binding target as j

$$V(x, y) =$$

 $y - \hat{\mu}(x)$ Powerful score 🗎 BH_res 🖨 BH_clip

Real data: "needle in the haystack"

- \blacktriangleright High throughput screening: usually $\,\approx 0.1\,\%\,$ active among ~ 100k drugs
- Can narrow down to hundreds of drugs while controlling the FDR

% active among ~ 100k drugs le controlling the FDR

Summary for i.i.d./exchangeable case

- Arbitrary prediction model \checkmark
- Arbitrary data distribution \checkmark
- Random thresholds \checkmark
- Dependent data points \checkmark

Jin, Y. and Candès, E.J., 2023. Model-free selective inference under covariate shift via weighted conformal p-values. *arXiv preprint arXiv:2307.09291*.

Part II: Addressing distribution shift

Distribution shift

- Are my evaluated drugs comparable to the unknown drugs?
 - **No** if you preferred drugs with some specific structures, etc

- So far: valid for synthetic-to-synthetic, or well-controlled experiments
- In reality: distribution shift when generating/exploring new drugs

- Similar issues in job hiring, health monitoring, counterfactual inference...

New drugs

Model-free selective inference under covariate shift

- Test data $\{(X_{n+j}, Y_{n+j})\} \sim \mathbb{Q}$ (unknown)
- Covariate shift: training data $\{(X_i, Y_i)\} \sim \mathbb{P}$ obeying

 $\frac{dQ}{dP}(x, y) = w(x)$

- \blacktriangleright Why? Training data collected by looking at X (drugs, job applicants...) Still want to find test samples $Y_{n+j} > c_{n+j}$ with FDR control

- for some (known or estimable) weight function $w: \mathscr{X} \to \mathbb{R}^+$ [Sugiyama et al., 2007, Tibshirani et al., 2019]

Obtaining valid confidence measures

Histogram of scores and weights in orange

Weighted conformal p-values

$$p_j = \frac{\sum_{i=1}^n w(X_i) \mathbf{1} \{ V_i < \hat{V}_i \\ \sum_{i=1}^n w(X_i) \}}{\sum_{i=1}^n w(X_i)}$$

 $\approx \text{weighted rank of } \hat{V}_{n+j} \text{ among training scores } \{V_i\}_{i=1}^n$ $\hat{V}_{n+j} \} + U_j \cdot w(X_{n+j})$ $U_j \sim \text{Unif}[0,1]$

Obtaining valid confidence measures

Histogram of scores and weights in orange

Well-calibrated p-values:

 $\mathbb{P}(p_j \le t, Y_{n+j} \le c_{n+j}) \le t, \quad \forall t \in [0,1]$

Using weighted ecdf to construct p-values

~ Valid p-values from <u>weighted</u> rank test

Harnessing difficult dependence by new procedure

Weighted conformal p-values are no longer positively dependent!

Previously: select if p_i below a common data-dependent level τ Now: select if p_i below data-dependent level τ_i adapted to each drug

[Detailed method] [Detailed theorem]

Real data: drug-target-interaction under biased sampling

- DAVIS dataset, $Y \in \mathbb{R}$ continuous binding affinities, X feature for drug-target pairs
- $n_{tot} = 30060$ drug-target pairs in total
- Covariate shift created by preferring high-prediction drugs in training data
- $c_{n+i} = 0.8$ -th quantile of affinities for training pairs with same binding target as j

Real data: drug-target-interaction under biased sampling

- $n_{tot} = 30060$ drug-target pairs in total
- Covariate shift created by preferring high-prediction drugs in training data
- $c_{n+i} = 0.8$ -th quantile of affinities for training pairs with same binding target as j

DAVIS dataset, $Y \in \mathbb{R}$ continuous binding affinities, X feature for drug-target pairs

Covariates: learned representation in the hidden layer of neural nets

1: Gene perturbation selection

Experimental setup without shift

2: Protein stability selection

Shift from proteins in four rounds of experiments to single-mutation proteins

32

FDR target

Covariates: learned representation in the hidden layer of neural nets

3: Drug property selection

Shift in drug structure (scaffold)

4: Trial outcome prediction

Shift from earlier to future trials

Summary for covariate shift case

- Arbitrary prediction model \checkmark
- Arbitrary data distribution \checkmark
- Random thresholds \checkmark
- Dependent data points \checkmark
- **Robust to distribution shift!** \checkmark

Summary

- Controlling FDR is sensible and interpretable
- Novel methods that turn any prediction model into reliable selections
- Can deal with covariate shifts ~ novel testing procedures

Bridge between selective and model-free inference

90% active drugs

