Selection by Prediction with (Weighted) Conformal p-values

Ying Jin

Joint work with Emmanuel Candès

Department of Statistics, Stanford University

International Seminar on Selective Inference, May 17, 2023

ML prediction assists decision

How Good Machine

Learning in Recruitment Can Radically Transform Your Hiring

[VerVoe.com]

The Impact of Machine Learning on Modern Recruitment

SmartDreamers Team • Social Recruiting, Automation Oct 18 • 4 min read

[smartdreamers.com]

Market Insights — 24 min read

Machine learning in recruitment: a deep dive

Machine Learning's promise is to find the perfect candidate and assess them without your interference, but what is it exactly and how does it really help you?

[HeroHunt.ai]

▶ Job hiring: who to reach out to? who to select for interview?

ML prediction assists discovery

Deep Learning

Shortcuts to Simulation: How Deep Learning Accelerates Virtual Screening for Drug Discovery

May 11, 2020 (3) 14 min read

[DZone.com]

Automating Drug Discovery With Machine Learning

Article Published: April 16, 2021 | Neeta Ratanghayra, MPharm

[technologynetworks.com]

Drug discovery: which molecules/compounds to proceed to screening and clinical trials?

Finding a few interesting cases from a huge pool

Candidate drugs

Job applicants

Finding a few interesting cases from a huge pool

Finding a few interesting cases from a huge pool

ML in decision and discovery processes

Accelerating discovery via machine learning prediction

ML in decision and discovery processes

Accelerating discovery via machine learning prediction

Our proposal

▶ Drug discovery with error control on the selected

Our proposal

Drug discovery with error control on the selected

Our proposal

Drug discovery with error control on the selected

Identify a few interesting cases from a huge pool

- Problem setting
 - ▶ Any pre-trained model $\widehat{\mu}$: $\mathcal{X} \to \mathcal{Y}$
 - X: physical/chemical features of the drug
 - Y: activity score should we physically screen the drug
 - $ightharpoonup Y \in \{0,1\}$: whether the drug is active for the disease
 - $Y \in \mathbb{R}$: how active the drug is for the disease
 - ▶ Training data $(X_i, Y_i) \sim \mathbb{P}$, i = 1, ..., n. (already-screened drugs)
 - lacktriangle Test samples $(X_{n+j}, Y_{n+j}) \sim \mathbb{P}$, $j=1,\ldots,m$. (new/other drugs in the library)
- ▶ Interesting \Leftrightarrow the unseen outcome is large $Y_{n+j} > c_{n+j}$
 - highly competent candidates, highly effective drugs
 - $ightharpoonup c_{n+j}$: how active should the drug Y_{n+j} be to be considered 'interesting' (pre-specified)

Predicting the unobserved responses: conformal prediction

- ► (Split) conformal inference [Vovk et al., 2005]
 - ▶ Find any nonconformity score $V: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$ (such as $V(x, y) = -|y \widehat{\mu}(x)|$)
 - ightharpoonup Compute $V_i = V(X_i, Y_i)$ for i = 1, ..., n
 - Construct prediction intervals

$$\widehat{\textit{C}}(\textit{X}_{\textit{n}+\textit{j}};\alpha) = \big\{\textit{y} \colon \textit{V}(\textit{X}_{\textit{n}+\textit{j}},\textit{y}) \geq \mathtt{Quantile}\big(\alpha, \textstyle\sum_{i=1}^{n} \frac{1}{n+1}\delta_{\textit{V}_i} + \frac{1}{n+1}\delta_{-\infty}\big)\big\}$$

Distribution-free guarantee

$$\mathbb{P}(Y_{n+j} \in \widehat{C}(X_{n+j}; \alpha)) \geq 1 - \alpha$$

for each j (marginalized over $\{X_i, Y_i\}_{i=1}^n$ and (X_{n+j}, Y_{n+j}))

- ▶ A literature on conformal prediction for drug discovery [Norinder et al., 2014, Svensson et al., 2017, Ahlberg et al., 2017, Svensson et al., 2018, Cortes-Ciriano and Bender, 2019, Wang et al., 2022]
 - Build prediction sets and identify promising drugs

Is validity for one single point sufficient?

- ightharpoonup Consider the binary case, where Y = 1 is of interest
 - ▶ Conformal prediction sets take the form $\{0\}, \{1\}, \{0, 1\}$
 - $\mathbb{P}(Y_{n+j} \in \widehat{C}(X_{n+j}; \alpha)) \ge 1 \alpha, \text{ over } \{X_i, Y_i\}_{i=1}^n \text{ and } (X_{n+j}, Y_{n+j})$
- ▶ What if we construct $\widehat{C}(X_{n+j}; \alpha)$ and choose those $\widehat{C}(X_{n+j}; \alpha) = \{1\}$?
 - Coverage on average does not imply coverage on selected ones

- \triangleright x-axis is marginal coverage level $1-\alpha$
- dark curve is miscoverage for all test data
- orange curve is miscoverage for those $\widehat{C}(X_{n+j}; \alpha) = \{1\}$

The selection issue with multiple decisions

- ▶ What if we construct $\widehat{C}(X_{n+j}; \alpha)$ and choose those seemingly promising ones?
 - Coverage on average does not imply coverage on selected ones

Error on the selected is more of concern

Error control on the selected

- ▶ We want to select those $Y_{n+j} > c_{n+j}$ among test samples
 - ▶ Training data $(X_i, Y_i) \sim \mathbb{P}$, i = 1, ..., n. (already-screened drugs)
 - ▶ Test samples $(X_{n+j}, Y_{n+j}) \sim \mathbb{P}$, j = 1, ..., m. (new/other drugs in the library)
 - $ightharpoonup c_{n+j}$: how active should the drug be to be considered 'interesting'
- ▶ Limiting the proportion of false selections: FDR control

$$\mathbb{E}\left[\frac{\sum_{j=1}^m \mathbb{1}\{Y_{n+j} \leq c_{n+j} \text{ but selected}\}}{1 \vee \sum_{j=1}^m \mathbb{1}\{Y_{n+j} \text{ selected}\}}\right] \leq q$$

- ▶ Why counting the error? Cost of follow-up studies, cost of interviews, cost of a missing patient...
- Why proportion? Tradeoff between costs and rewards

Selection by prediction with conformal p-values

► Testing random hypotheses

$$H_j$$
: $Y_{n+j} \leq c_{n+j}$, $j = 1, \ldots, m$.

- ▶ Rejecting H_j means claiming $Y_{n+j} > c_{n+j}$
- Our idea: construct p-values for these hypotheses and do classical

Selection by prediction with conformal p-values

- ► A general strategy
 - lacktriangle Construct monotone nonconformity score V(x,y), such that $y\leq y'$ implies $V(x,y)\leq V(x,y')$
 - ▶ One-sided residual $V(x, y) = y \widehat{\mu}(x)$
 - Fitted cumulative distribution function $V(x, y) = \widehat{P}(Y \le y \mid X = x)$
 - Construct training scores $V_i := V(X_i, Y_i), i = 1, ..., n$
 - Construct test scores $\widehat{V}_{n+j} := V(X_{n+j}, c_{n+j}), j = 1, \dots, m$
 - ightharpoonup Obtain selection set by BH(q) procedure with conformal p-values (no ties)

$$p_j = rac{\sum_{i=1}^n \mathbb{1} \{V_i < \widehat{V}_{n+j}\} + U_j}{n+1}, \quad U_j \sim \mathsf{Unif}[0,1]$$

▶ That is, $\mathcal{R} = \{j: p_j \le qk^*/m\}$, where $k^* = \max\{k: \sum_{j=1}^m \mathbb{1}\{p_j \le qk/m\} \ge k\}$

The above procedure controls FDR below q for i.i.d. or exchangeable data

Back to the drug discovery pipeline

Conformal p-values via inverting conformal prediction intervals

 $ightharpoonup p_j$ is the smallest lpha such that one-sided (1-lpha) prediction interval excludes (all lies above) c_{n+j}

$$\begin{split} & p_j = \inf \big\{ \alpha \colon c_{n+j} \notin \widehat{C}(X_{n+j}; \alpha) \big\}, \quad \text{where} \\ & \widehat{C}(X_{n+1}; \alpha) = \Big\{ y \colon V(X_{n+1}, y) \geq \text{Quantile} \big(\alpha, \sum_{i=1}^n \frac{1}{n+1} \delta_{V_i} + \frac{1}{n+1} \delta_{-\infty} \big) \Big\} \,. \end{split}$$

ightharpoonup A small p-value indicates that c_{n+j} is smaller than the typical behavior of Y_{n+j}

P-values for random hypotheses

▶ In conventional setting with deterministic hypotheses, we often rely on

$$\mathbb{P}(p_j \le \alpha) \le \alpha \quad \text{for } j \in \mathcal{H}_0$$

ightharpoonup Our p_j instead satisfies a generalized notion of "type-I error" control:

$$\mathbb{P}(p_j \leq \alpha, j \in \mathcal{H}_0) \leq \alpha,$$

In particular, it obeys that for some "always null" $p_i^* \sim \mathsf{Unif}[0,1]$,

$$p_j \geq p_j^*$$
 on the event $\{j \in \mathcal{H}_0\}$.

► FDR control comes from this null property + PRDS among all p-values

Theory for FDR control

Write
$$Z_i = (X_i, Y_i)$$
 for $i = 1, \ldots, n+m$ and $\widetilde{Z}_{n+j} = (X_{n+j}, c_{n+j})$ for $j = 1, \ldots, m$.

Theorem (J. and Candès, 2022)

Suppose V is monotone, the training data $\{Z_i\}_{i=1}^n$ and test data $\{Z_{n+j}\}_{j=1}^m$ are i.i.d., and data in $\{Z_i\}_{i=1}^n \cup \{\widetilde{Z}_{n+\ell}\}_{\ell \neq j} \cup \{Z_{n+j}\}$ are mutually independent for any j. Then, for any $q \in (0,1)$, the output $\mathcal R$ of our procedure with input level q satisfies

$$FDR = \mathbb{E}\left[\frac{\sum_{j=1}^{m} I\{j \in \mathcal{R}, Y_{n+j} \leq c_{n+j}\}}{1 \vee |\mathcal{R}|}\right] \leq q.$$

Theory for FDR control

- ► Step 1: Leave-one-out
 - ▶ Define 'oracle' p-values $p_j^* = \frac{\sum_{i=1}^n 1 \{V_i < V_{n+j}\} + U_j}{n+1}$, where $V_{n+j} = V(X_{n+j}, Y_{n+j})$ [Bates et al., 2021]
 - $\blacktriangleright \text{ Let } \mathcal{R}_j^* = \mathrm{BH}(q; p_1, \ldots, p_{j-1}, \textcolor{red}{p_j^*}, p_{n+j}, \ldots, p_n)$
 - ▶ On the event $\{j \in \mathcal{R}, Y_{n+j} \leq c_{n+j}\}$, one has $\mathcal{R} = \mathcal{R}_j^*$ and $p_j^* \leq p_j$, hence

$$\mathbb{E}\left[\frac{\sum_{j=1}^{m} \mathbb{1}\{Y_{n+j} \leq c_{n+j}, \ j \in \mathcal{R}\}}{1 \vee |\mathcal{R}|}\right] \leq \sum_{j=1}^{m} \mathbb{E}\left[\frac{\mathbb{1}\{Y_{n+j} \leq c_{n+j}, \ p_{j} \leq q |\mathcal{R}_{j}^{*}|/m\}}{1 \vee |\mathcal{R}_{j}^{*}|}\right] \leq \sum_{j=1}^{m} \mathbb{E}\left[\frac{\mathbb{1}\{p_{j}^{*} \leq q |\mathcal{R}_{j}^{*}|/m\}}{1 \vee |\mathcal{R}_{j}^{*}|}\right]$$

- Step 2: PRDS for FDR control
 - For each j, $(p_1, \ldots, p_{j-1}, p_{j+1}, \ldots, p_m)$ is PRDS on p_j^*
 - ▶ Also, $p_j^* \sim \text{Unif}[0,1]$. Thus

$$\sum_{j=1}^m \mathbb{E}\left[\frac{\mathbb{1}\{p_j^* \leq q|\mathcal{R}_j^*|/m\}}{1 \vee |\mathcal{R}_j^*|}\right] \leq \sum_{j=1}^m \frac{q}{m} = q.$$

Power considerations

- ▶ While FDR is controlled for any monotone score *V*, some is powerful
- ▶ If the thresholds are constant $c_{n+j} \equiv c$, a particularly powerful choice is the 'clipped' score

$$V(x,y) = +\infty \cdot \mathbb{1}\{y > c\} + c \cdot \mathbb{1}\{y \le c\} - \widehat{\mu}(x)$$

▶ In the binary case with c = 0, an ideal score should be monotone in $\mathbb{P}(Y = 1 \mid X = x)$

Real data: Drug property prediction for HIV

- $ightharpoonup Y \in \{0,1\}$: whether the drugs interact with the disease
- $ightharpoonup n_{
 m tot} = 41127$ in total, 6 : 2 : 2 split, 3% in the training fold are active
- ► FDR level: $q \in \{0.1, 0.2, 0.5\}$
- Small neural network for illustration (can be more complicated)

	FDR			Power			$ \mathcal{R} $		
Level q	0.1	0.2	0.5	0.1	0.2	0.5	0.1	0.2	0.5
BH_clip	0.0957	0.196	0.495	0.0788	0.174	0.410	26.5	64.2	240
BH_res	0.0989	0.196	0.494	0.0766	0.174	0.410	25.8	64.4	239

Table: FDR and power of the three methods averaged over N = 100 random splits.

So far, and next

- ▶ Reliable screening + selection procedure from any prediction model
- ▶ Works for i.i.d. or exchangeable (i.e., finite population) training and test samples
- Next: distribution shifts
 - Are my evaluated drugs comparable to the unknown drugs?

► Similar concerns apply to job recruiting, health risk monitoring, etc

Selection by prediction under covariate shifts

- $lackbox{ We assume that the test data } \{(X_{n+j},Y_{n+j})\}\stackrel{\text{i.i.d.}}{\sim} \mathbb{Q} \text{ for some unknown } \mathbb{Q}$
- ▶ The training (calibration) data are $\{(X_i, Y_i)\}$ $\stackrel{\text{i.i.d.}}{\sim} \mathbb{P}$ that obeys

$$\frac{\mathrm{d}\mathbb{Q}}{\mathrm{d}\mathbb{P}}(x,y)=w(x)$$

for some known weight function $w \colon \mathcal{X} \to \mathbb{R}^+$ [Tibshirani et al., 2019]

▶ Still want to find $Y_{n+j} > c_{n+j}$ with FDR control

Selection by prediction under covariate shifts

▶ If we apply the previous methods when there is actually covariate shift

P-values are no longer valid

FDR can be violated

Selection by prediction under covariate shifts

- Replace conformal p-values by weighted conformal p-values
 - Construct monotone nonconformity score V(x,y), such that $y \le y'$ implies $V(x,y) \le V(x,y')$
 - ► Construct $\widehat{V}_{n+j} = V(X_{n+j}, c_{n+j})$, j = 1, ..., m and $V_i = V(X_i, Y_i)$, i = 1, ..., n
 - Compute weighted conformal p-values (no ties)

$$p_{j} = \frac{\sum_{i=1}^{n} w(X_{i}) \mathbb{1} \{V_{i} < \widehat{V}_{n+j}\} + w(X_{n+j})}{\sum_{i=1}^{n} w(X_{i}) + w(X_{n+j})}$$

▶ We again have generalized type-I error control under covariate shift:

$$\mathbb{P}(p_j \leq \alpha, j \in \mathcal{H}_0) \leq \alpha, \quad \forall \alpha \in (0, 1)$$

Question: Does the previous recipe for FDR control apply?

Weighted conformal p-values are not PRDS

Theorem (J. and Candès, in preparation, 2023+)

Suppose we construct p_j with $c_{n+j} = Y_{n+j}$. Then there exists a weight function $w(\cdot)$ and a monotone score function $V(\cdot, \cdot)$, such that the weighted conformal p-values are **not** PRDS.

- ▶ The PRDS property may fail when $V(X_i, Y_i)$ are negatively associated with $w(X_i)$
- ► Why?
 - ▶ Without weights, small $p_j \Leftrightarrow$ large training scores $\{V_i\} \Leftrightarrow$ small other p-values
 - With data-dependent weights, one cannot tell whether a small p_j is due to large training scores (hence other p-values are small) or small training weights (hence other p-values can be large)

Does BH + weighted p-values still work?

- \blacktriangleright We can show applying BH(q) to weighted conformal p-values controls FDR asympototically
 - ▶ For fixed m and $n \to \infty$, or $m, n \to \infty$ when data are i.i.d. from $\mathbb P$ and $\mathbb Q$
 - ▶ It also empirically controls the FDR in most of our numerical experiments
- ▶ But we recently observe violated FDR in a large-scale drug discovery task (finite population)
- ► Theoretically, it is still an open problem

A new approach to exact FDR control

- ightharpoonup Compute V_i , \widehat{V}_{n+i} , and p_i as before
- \triangleright Calibrate the rejection threshold of p_i via 'auxiliary p-values'
 - For each j, for all $\ell \neq j$, define

$$\rho_{\ell}^{(j)} = \frac{\sum_{i=1}^{n} w(X_i) \mathbb{1} \{V_i < \widehat{V}_{n+\ell}\} + w(X_{n+j}) \mathbb{1} \{\widehat{V}_{n+j} < \widehat{V}_{n+\ell}\}}{\sum_{i=1}^{n} w(X_i) + w(X_{n+j})}$$

(as opposed to)
$$p_{\ell} = \frac{\sum_{i=1}^{n} w(X_{i}) 1 \{V_{i} < \widehat{V}_{n+\ell}\} + w(X_{n+\ell})}{\sum_{i=1}^{n} w(X_{i}) + w(X_{n+\ell})}$$

- Let $\widehat{\mathcal{R}}_i$ be the rejection set of BH(q) applied to $\{0\} \cup \{p_\ell^{(j)}\}_{\ell \neq j}$
- ▶ Set the rejection threshold $s_j = q|\widehat{\mathcal{R}}_j|/m$
- ► Obtain the final rejection set

$$\mathcal{R} := \left\{ j \colon p_j \le s_j, \ \xi_j | \widehat{\mathcal{R}}_j | \le r^* \right\}, \quad r^* := \max\{r \colon \sum_{j=1}^m \mathbb{1} \left\{ p_j \le s_j, \ \xi_j | \widehat{\mathcal{R}}_j | \le r \right\} \ge r \}$$
 where either $\xi_j \equiv 1, \ \xi_j \equiv \xi \sim \mathrm{Unif}[0,1], \ \text{or} \ \xi_j \stackrel{\mathrm{i.i.d.}}{\sim} \mathrm{Unif}[0,1].$

Exact FDR control

Theorem (J. and Candès, in preparation, 2023+)

Suppose $\{Z_i\}_{i=1}^n \overset{i.i.d.}{\sim} \mathbb{P}$ and $\{Z_{n+j}\}_{j=1}^m \overset{i.i.d.}{\sim} \mathbb{Q}$ for $Z_i = (X_i, Y_i)$, and the covariate shift holds for $w(\cdot)$. Assume that for each $j = 1, \ldots, m$, data in $\{Z_1, \ldots, Z_n, Z_{n+j}\} \cup \{\widetilde{Z}_{n+\ell}\}_{\ell \neq j}$ are mutually independent for $\widetilde{Z}_{n+\ell} = (X_{n+\ell}, c_{n+\ell})$. Then all three choices of $\{\xi_i\}$ lead to

$$\mathbb{E}\left\lceil\frac{\sum_{j=1}^{m}\mathbb{1}\left\{j\in\mathcal{R},j\in\mathcal{H}_{0}\right\}}{1\vee|\mathcal{R}|}\right\rceil\leq q,$$

where the expectation is taken over both calibration and test data.

Theory: step I

Proof step 1: Extending the conditional calibration idea [Fithian and Lei, 2022], one can show that with all three choices of $\{\xi_i\}$,

$$\mathbb{E}\left[\frac{\sum_{j=1}^{m}\mathbb{1}\left\{j\in\mathcal{R},j\in\mathcal{H}_{0}\right\}}{1\vee|\mathcal{R}|}\right]\leq\sum_{j=1}^{m}\mathbb{E}\left[\frac{\mathbb{1}\left\{p_{j}\leq s_{j},Y_{n+j}\leq c_{n+j}\right\}}{|\widehat{\mathcal{R}}_{j}|}\right].$$

Theory: step II, leave-one-out analysis

▶ Proof step 2: Leave-one-out analysis. We relate p_j and $p_\ell^{(j)}$ to

$$p_{j}^{*} = \frac{\sum_{i=1}^{n} w(X_{i}) \mathbb{1} \{V_{i} < \frac{V_{n+j}\} + w(X_{n+j})}{\sum_{i=1}^{n} w(X_{i}) + w(X_{n+j})},$$

$$p_{\ell}^{*,(j)} = \frac{\sum_{i=1}^{n} w(X_{i}) \mathbb{1} \{V_{i} < \widehat{V}_{n+\ell}\} + w(X_{n+j}) \mathbb{1} \{\frac{V_{n+j}}{\sum_{i=1}^{n} w(X_{i}) + w(X_{n+j})}\}$$

The only distinction between them is whether we used \widehat{V}_{n+j} or V_{n+j}

- $\blacktriangleright \ \, \mathsf{Define} \,\, \mathsf{a} \,\, \mathsf{`proxy'} \,\, \mathsf{rejection} \,\, \mathsf{set} \,\, \mathcal{R}^*_{j \to 0} = \mathrm{BH}\big(q; \, p_1^{*,(j)}, \cdots, p_{j-1}^{*,(j)}, 0, p_{j+1}^{*,(j)}, \cdots, p_m^{*,(j)}\big)$
- ► A more complicated leave-one-out analysis yields

$$\sum_{j=1}^{m} \mathbb{E}\left[\frac{\mathbb{1}\left\{p_{j} \leq s_{j}, Y_{n+j} \leq c_{n+j}\right\}}{|\widehat{\mathcal{R}}_{j}|}\right] \leq \sum_{j=1}^{m} \mathbb{E}\left[\frac{\mathbb{1}\left\{p_{j}^{*} \leq q \middle| \mathcal{R}_{j \to 0}^{*} \middle| / m\right\}}{|\mathcal{R}_{j \to 0}^{*}|}\right]$$

Theory: step III, conditional independence

▶ Proof step 3: Due to covariate shift,

$$p_j^* \perp \perp \left| \mathcal{R}_{j \to 0}^* \right| \quad \mathbf{Z}_j, \quad \forall j$$

for the unordered set $\mathbf{Z}_j = [Z_1, \dots, Z_n, Z_{n+j}]$, where $Z_i = (X_i, Y_i)$

- A rough argument:
 - $ightharpoonup |\mathcal{R}_{j o 0}^*|$ only depends on the unordered set \mathbf{Z}_j and $\{\widehat{V}_{n+\ell}\}_{\ell
 eq j}$
 - $ightharpoonup p_j^*$ and \mathbf{Z}_j are independent of $\{\widehat{V}_{n+\ell}\}_{\ell
 eq j}$
- ▶ Also, $p_i^* \mid \mathbf{Z}_i$ stochastically dominates Unif[0, 1]. This gives

$$\sum_{i=1}^m \mathbb{E}\left[\frac{\mathbb{1}\left\{\rho_j^* \leq q \middle| \mathcal{R}_{j \to 0}^*\middle|/m\right\}}{|\mathcal{R}_{j \to 0}^*|}\right] \leq \sum_{i=1}^m \mathbb{E}\left[\frac{q |\mathcal{R}_{j \to 0}^*\middle|/m}{|\mathcal{R}_{j \to 0}^*|}\right] = q.$$

Connection to conditional calibration [Fithian and Lei, 2022]: Z_i serves as the 'sufficient statistic'

Real data: drug-target interaction prediction under biased sampling

- ▶ DAVIS dataset, $Y \in \mathbb{R}$ continuous binding affinities, X feature for drug-target pairs
- $ightharpoonup n_{\text{tot}} = 30060 \text{ drug-target pairs in total}, 2:2:6 \text{ split}$
- ▶ Covariate shift created by preferring high-prediction drugs in calibration data
- ▶ c_{n+j} = the q_{pop} -th quantile of the outcomes of the training samples with the same binding target as sample j, where $q_{pop} \in \{0.7, 0.8, 0.9\}$. FDR level: $q \in \{0.1, 0.2, 0.5\}$

Other applications of this framework

- Detecting positive individual treatment effects
 - lacktriangle $\Delta = O(1) O(0)$ is the difference between outcome under treatment O(1) and under control O(0)
 - Our method allows for finding $O_{n+j}(1) > O_{n+j}(0)$ test units in the control group (so that $O_{n+j}(0)$ is observed, but $O_{n+j}(1)$ is not) with FDR control
 - lt is equivalent to taking $Y_{n+j} = O_{n+j}(1)$ and $c_{n+j} = O_{n+j}(0)$
 - Works even though two quantities are never observed for calibration data
- ▶ Detecting outliers/concept drifts under covariate shift

Summary

- ▶ We argue FDR as a sensible error criterion in prediction-assisted screening and discovery
- ▶ Methods that turns *any* prediction model into a reliable selection procedure
 - ▶ P-value and multiple testing for random hypotheses
- Extend to settings with covariate shifts
 - ► Some more complicated methodology & theory

(first part) arXiv: 2210.01408

Small set with (1-q) true discovery