Upper bounds on the Natarajan dimensions of some function classes

Ying Jin
https://ying531.github.io
Department of Statistics, Stanford University
IEEE International Symposium on Information Theory (ISIT), June 27, 2023

Natarajan dimension and multi-class learnability

- Empirical risk minimization for multi-class classification

$$
\widehat{f}=\underset{f \in \mathcal{F}}{\operatorname{argmax}} \frac{1}{n} \sum_{i=1}^{n} \ell\left(f\left(X_{i}\right), Y_{i}\right),
$$

where $Y_{i} \in\{1, \ldots, d\}$ is categorical, and $\ell(\cdot, \cdot)$ is some (classification) loss

- In learning theory, the performance/learnability of \widehat{f} depends on the complexity of \mathcal{F}

Natarajan dimension and multi-class learnability

- Natarajan dimension is a complexity measure for multi-class classification

Definition (Natarajan dimension)

Let \mathcal{H} be a class of functions $h: \mathcal{X} \rightarrow \mathcal{Y}$, where $\mathcal{Y}=\{1, \ldots, d\}$, and let $S \subseteq \mathcal{X}$. We say that \mathcal{H} N-shatters S if there exists $f_{1}, f_{2}: S \rightarrow \mathcal{Y}$ such that $f_{1}(x) \neq f_{2}(x)$ for all $x \in S$, and for every $T \subseteq S$, there exists some $g \in \mathcal{H}$ such that

$$
\forall x \in T, g(x)=f_{1}(x), \quad \text { and } \quad \forall x \in S \backslash T, g(x)=f_{2}(x)
$$

The Natarajan dimension of \mathcal{H}, denoted as $d_{N}(\mathcal{H})$, is the maximal cardinality of any set that is N -shattered by \mathcal{H}.

- It generalizes the Vapnik-Chervonenkis (VC) dimension from binary to multi-class classification
- An equivalent notion is the graph dimension (see paper)

This work, and related ones

- This work: upper bounds on the Natarajan dimension of popular function classes
- Decision trees and random forests
- Neural networks with binary, linear, and ReLU activations
- Existing upper bounds on the Natarajan dimensions
- Generalized linear models and reduction trees [Daniely et al., 2011]
- Multi-class support vector machines [Guermeur, 2010]
- One-versus-all, all-pairs, error-correcting-output-codes methods [Daniely et al., 2012]
- Proof techniques for neural nets generalize the techniques in [Sontag et al., 1998]

Upper bounding Natarajan dimension by growth functions

- The high-level idea of our bounds is by noting that for any function class \mathcal{H},

$$
2^{d_{N}(\mathcal{H})} \leq G\left(\mathcal{H}, d_{N}(\mathcal{H})\right)
$$

where we define the growth function of \mathcal{H} as

$$
G(\mathcal{H}, n):=\max _{x_{1}, \ldots, x_{n} \in \mathcal{X}}\left|\left\{\left(f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{n}\right)\right): f \in \mathcal{H}\right\}\right|
$$

- That is, we get an upper bound $\mathcal{U}(\mathcal{H}, n)$ of $G(\mathcal{H}, n)$ in terms of n and function class parameters. And then solve the inequality (for n)

$$
2^{n} \leq \mathcal{U}(\mathcal{H}, n)
$$

to get an upper bound on $d_{N}(\mathcal{H})$

Decision trees and random forests

- Depth- L, d-class decision tree function class $\Pi_{L, d}^{\text {dtree }}$
- Each internal node v is associated with a feature $i_{v} \in\{1, \ldots, p\}$ and a threshold $\theta_{v} \in \mathbb{R}$
- Each leaf node is associated with a class $k \in\{1, \ldots, d\}$
- For input $x \in \mathbb{R}^{p}$, the output is obtained by traversing a path of length $L-1$ from the root node to the leaf node. At each node, go to left child if $x_{i v} \leq \theta_{v}$ and to right child otherwise

Decision trees and random forests

- Depth- L, d-class, T-tree random forests $\Pi_{L, T, d}^{\text {forest }}$
- a classifier $F(\cdot)$ based on T depth- $L d$-class decision trees $f_{j}(\cdot), j=1, \ldots, T$
- $F(x)=\operatorname{argmax}_{1 \leq k \leq d} \sum_{j=1}^{T} \boldsymbol{1}\left\{f_{j}(x)=k\right\}$, the most-frequently predicted class among all T trees
- We derive an upper bound of the N-dim of $\Pi_{L, T, d}^{\text {forest }}$ based on an upper bound of $\Pi_{L, d}^{d t r e e}$

Decision trees and random forests

Theorem (Decision trees; J. 2023)

The Natarajan dimension of $\Pi_{L, d}^{\text {dtree }}$ with inputs from \mathbb{R}^{p} is no greater than $\mathcal{O}\left(L 2^{L} \log (p d)\right)$.

Theorem (Random forests; J. 2023)

The Natarajan dimension of $\Pi_{L, T, d}^{\text {forest }}$ with inputs from \mathbb{R}^{p} is no greater than $\mathcal{O}\left(L T 2^{L} \log (p d)\right)$.

- Proof idea: bound \# of distinct classifications over any $\left\{x_{1}, \ldots, x_{n}\right\}$ (the growth function)
- The growth function of $\Pi_{L, T, d}^{\text {forest }}$ is bounded by that of $\Pi_{L, d}^{\text {dtree }}$ to the power of T
- Agree with the VC-dimension upper bound in [Leboeuf et al. 2022] (a very recent result that appeared later than the arXiv version of this paper)

Multi-class neural networks with binary \& linear activation

- Neural network function class $\Pi_{p, S}^{\text {bin-lin }}$ with a fixed structure S of p parameters
- There are p parameters in totol:
$\left\{w_{\ell, j, s}\right\}_{1 \leq \ell \leq L, 1 \leq j \leq n_{\ell}, 1 \leq s \leq m_{\ell, j}}$
- Input layer has one node for each feature
- Output for node j in hidden layer ℓ is $f_{j}^{(\ell)}(x)=\sigma\left(\sum_{s=1}^{m_{\ell, j}} w_{\ell, j, s} f_{s}^{(\ell-1)}(x)\right)$, where $m_{\ell, j}$ is the number of nodes in layer $\ell-1$ that are connected to node j in layer ℓ
- $\sigma(\cdot)$ is the activation function; in this class, either $\sigma(z)=z$ or $\sigma(z)=\mathbf{1}\{z>0\}$
- Each class has a final output (fully connected), and the classification is given by the maximum output: $f(x ; w)=\operatorname{argmax}_{1 \leq k \leq d} \sum_{s=1}^{n_{L-1}} w_{L, k, s} f_{s}^{(L-1)}(x)$

Multi-class neural networks with binary \& linear \& ReLU activation

- Neural network function class $\prod_{p, S}^{\mathrm{ReLU}}$ with a fixed structure S of p parameters

- Structure notations the same as before
- Allow for ReLU activation function; in this class, either $\sigma(z)=z$ or $\sigma(z)=\mathbf{1}\{z>0\}$ or $\sigma(z)=z \mathbf{1}\{z>0\}$

Hidden layers $\times(L-1)$

Multi-class neural networks

Theorem (J. 2023)

The Natarajan dimensions of $\Pi_{p, S}^{b i n-l i n}$ and $\Pi_{p, S}^{R e L U}$ are both upper bounded by $\mathcal{O}\left(d \cdot p^{2}\right)$, where d is the number of classes, and p is the number of parameters.

- Textbook result [Shalev-Shwartz and Ben-David, 2014] shows neural nets with p parameters and only binary activation has VC dimension $\mathcal{O}(p \log p)$, while Sontag et al. [1998] shows neural nets with p parameters and binary \& linear activations has VC dimension $\mathcal{O}\left(p^{2}\right)$
- Results on VC dimensions suggest linear activation incurs a factor of p
- Our bound adds a factor of d for d-class classification, and agrees with Sontag et al. [1998] when reduced to binary classification
- Our proof idea generalizes Sontag et al. [1998], which depends on an equivalent description of all possible distinct functions that can be expressed by functions in the class

Thank you!

Feel free to check arXiv: 2209.07015

Questions? reach me at ying531[at]stanford[dot] edu
My website https://ying531.github.io

