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Natarajan dimension and multi-class learnability

» Empirical risk minimization for multi-class classification

~ 1<
f= argmax — L(AX), Y:),
a3 (%), V)

where Y; € {1,...,d} is categorical, and ¢(-,-) is some (classification) loss

» In learning theory, the performance/learnability of?depends on the complexity of F
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Natarajan dimension and multi-class learnability

» Natarajan dimension is a complexity measure for multi-class classification

Definition (Natarajan dimension)

Let H be a class of functions h: X — ), where Y = {1,...,d}, and let SC X. We say that H
N-shatters S if there exists fi, f,: S — ) such that fi(x) # f(x) for all x€ S, and for every TC S,
there exists some g € H such that

Vxe T, g(x) = fi(x), and Vxe S\T, g(x) = h(x).
The Natarajan dimension of 7, denoted as dy(#), is the maximal cardinality of any set that is

N-shattered by H.

> It generalizes the Vapnik-Chervonenkis (VC) dimension from binary to multi-class classification

> An equivalent notion is the graph dimension (see paper)
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This work, and related ones

» This work: upper bounds on the Natarajan dimension of popular function classes

» Decision trees and random forests

» Neural networks with binary, linear, and ReLU activations

» Existing upper bounds on the Natarajan dimensions

» Generalized linear models and reduction trees [Daniely et al., 2011]
» Multi-class support vector machines [Guermeur, 2010]

» One-versus-all, all-pairs, error-correcting-output-codes methods [Daniely et al., 2012]

» Proof techniques for neural nets generalize the techniques in [Sontag et al., 1998]
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Upper bounding Natarajan dimension by growth functions

» The high-level idea of our bounds is by noting that for any function class #,
2 < G(H, du(H)),

where we define the growth function of # as

G(H,n):= max ‘{(f(xl), fx2), ... Axn)): FE /H}‘

X1y-eesXnEX

> That is, we get an upper bound U(H, n) of G(H, n) in terms of n and function class parameters.
And then solve the inequality (for n)

2" <U(H,n)

to get an upper bound on dy(H)
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Decision trees and random forests

» Depth-L, d-class decision tree function class I'ICLP“Q‘“‘e

» Each internal node v is associated with a feature i, € {1,..., p} and a threshold 6, € R
» Each leaf node is associated with a class k € {1,...,d}

> For input x € R”, the output is obtained by traversing a path of length L — 1 from the root node to
the leaf node. At each node, go to left child if x;, < 6, and to right child otherwise

i,=10,=1

some x; > 1 and x» < —0.3

class 2 class 1 class 3 class 1
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Decision trees and random forests

» Depth-L, d-class, T-tree random forests I'IfLor{?ij

> a classifier F(-) based on T depth-L d-class decision trees fi(:), j=1,..., T
> F(x) = argmaxlgkgdz;l 1{fj(x) = k}, the most-frequently predicted class among all T trees

» We derive an upper bound of the N-dim of I'IfLO’sgi,t based on an upper bound of I'Ij_lfgee
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Decision trees and random forests

Theorem (Decision trees; J. 2023)

The Natarajan dimension of M{5°¢ with inputs from RP is no greater than O(L2" log(pd)).

Theorem (Random forests; J. 2023)

forest

The Natarajan dimension of )°F5 with inputs from RP is no greater than O(LT2" log(pd)).
> Proof idea: bound # of distinct classifications over any {xi,...,x,} (the growth function)
> The growth function of M{*}% is bounded by that of M{";*® to the power of T

> Agree with the VC-dimension upper bound in [Leboeuf et al. 2022] (a very recent result that appeared
later than the arXiv version of this paper)
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Multi-class neural networks with binary & linear activation

» Neural network function class I'I};igl‘hn with a fixed structure S of p parameters

» There are p parameters in totol:
{W/.jts}lgégL.lgjgmAlgsgmkd

» Input layer has one node for each feature

» Output for node j in hidden layer £ is

ch:u fj(.l)(x) =o(X0Y wm-,sfg*l)(x)), where my ; is the
O“ k: number of nodes in layer £ — 1 that are connected to
node j in layer £

OUW:? » o(-) is the activation function; in this class, either
o(z) =zoro(z) =1{z> 0}

Input Output

» Each class has a final output (fully connected), and the
Hidden layers X (L — 1) classification is given by the maximum output:

flx w) = argmax; <cg 30" wi kst (x)
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Multi-class neural networks with binary & linear & RelLU activation

» Neural network function class I'III}CSLU with a fixed structure S of p parameters

O“‘““" » Structure notations the same as before

C)C““‘:2 » Allow for ReLU activation function; in this class, either
o;’& OCW:; o(z) =zor o(z) = 1{z> 0} or o(z) = z21{z > 0}

Hidden layers X (L — 1)
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Multi-class neural networks

Theorem (J. 2023)

The Natarajan dimensions of N7t and MMV are both upper bounded by O(d- p?), where d is the
number of classes, and p is the number of parameters

» Textbook result [Shalev-Shwartz and Ben-David, 2014] shows neural nets with p parameters and only
binary activation has VC dimension O(plog p), while Sontag et al. [1998] shows neural nets with p
parameters and binary & linear activations has VC dimension O(p?)

» Results on VC dimensions suggest linear activation incurs a factor of p

» Our bound adds a factor of d for d-class classification, and agrees with Sontag et al. [1998] when
reduced to binary classification

» QOur proof idea generalizes Sontag et al. [1998], which depends on an equivalent description of all
possible distinct functions that can be expressed by functions in the class
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Thank you!

Feel free to check arXiv: 2209.07015

Questions? reach me at ying531[at]stanford[dot]edu

My website https://ying531.github.io
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