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Natarajan dimension and multi-class learnability

▶ Empirical risk minimization for multi-class classification

f̂ = argmax
f∈F

1
n

n∑
i=1

ℓ(f(Xi),Yi),

where Yi ∈ {1, . . . , d} is categorical, and ℓ(·, ·) is some (classification) loss

▶ In learning theory, the performance/learnability of f̂ depends on the complexity of F
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Natarajan dimension and multi-class learnability

▶ Natarajan dimension is a complexity measure for multi-class classification

Definition (Natarajan dimension)
Let H be a class of functions h : X → Y, where Y = {1, . . . , d}, and let S ⊆ X . We say that H
N-shatters S if there exists f1, f2 : S → Y such that f1(x) ̸= f2(x) for all x ∈ S, and for every T ⊆ S,
there exists some g ∈ H such that

∀x ∈ T, g(x) = f1(x), and ∀x ∈ S\T, g(x) = f2(x).

The Natarajan dimension of H, denoted as dN(H), is the maximal cardinality of any set that is
N-shattered by H.

▶ It generalizes the Vapnik-Chervonenkis (VC) dimension from binary to multi-class classification
▶ An equivalent notion is the graph dimension (see paper)
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This work, and related ones

▶ This work: upper bounds on the Natarajan dimension of popular function classes
▶ Decision trees and random forests
▶ Neural networks with binary, linear, and ReLU activations

▶ Existing upper bounds on the Natarajan dimensions
▶ Generalized linear models and reduction trees [Daniely et al., 2011]

▶ Multi-class support vector machines [Guermeur, 2010]

▶ One-versus-all, all-pairs, error-correcting-output-codes methods [Daniely et al., 2012]

▶ Proof techniques for neural nets generalize the techniques in [Sontag et al., 1998]
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Upper bounding Natarajan dimension by growth functions

▶ The high-level idea of our bounds is by noting that for any function class H,

2dN(H) ≤ G(H, dN(H)),

where we define the growth function of H as

G(H, n) := max
x1,...,xn∈X

∣∣∣{(f(x1), f(x2), . . . , f(xn)
)
: f ∈ H

}∣∣∣
▶ That is, we get an upper bound U(H, n) of G(H, n) in terms of n and function class parameters.

And then solve the inequality (for n)

2n ≤ U(H, n)

to get an upper bound on dN(H)
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Decision trees and random forests

▶ Depth-L, d-class decision tree function class Πdtree
L,d

▶ Each internal node v is associated with a feature iv ∈ {1, . . . , p} and a threshold θv ∈ R
▶ Each leaf node is associated with a class k ∈ {1, . . . , d}
▶ For input x ∈ Rp, the output is obtained by traversing a path of length L − 1 from the root node to

the leaf node. At each node, go to left child if xiv ≤ θv and to right child otherwise

iv = 1, θv = 1

iv = 4, θv = 1.2 iv = 2, θv = −0.3

class 2 class 1 class 3 class 1

some x1 > 1 and x2 ≤ −0.3
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Decision trees and random forests

▶ Depth-L, d-class, T-tree random forests Πforest
L,T,d

▶ a classifier F(·) based on T depth-L d-class decision trees fj(·), j = 1, . . . ,T
▶ F(x) = argmax1≤k≤d

∑T
j=1 1{fj(x) = k}, the most-frequently predicted class among all T trees

▶ We derive an upper bound of the N-dim of Πforest
L,T,d based on an upper bound of Πdtree

L,d
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Decision trees and random forests

Theorem (Decision trees; J. 2023)
The Natarajan dimension of Πdtree

L,d with inputs from Rp is no greater than O(L2L log(pd)).

Theorem (Random forests; J. 2023)
The Natarajan dimension of Πforest

L,T,d with inputs from Rp is no greater than O(LT2L log(pd)).

▶ Proof idea: bound # of distinct classifications over any {x1, . . . , xn} (the growth function)

▶ The growth function of Πforest
L,T,d is bounded by that of Πdtree

L,d to the power of T

▶ Agree with the VC-dimension upper bound in [Leboeuf et al. 2022] (a very recent result that appeared
later than the arXiv version of this paper)
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Multi-class neural networks with binary & linear activation

▶ Neural network function class Πbin-lin
p,S with a fixed structure S of p parameters

σ

Input

Hidden layers × (L − 1)

Output

⋮

x2 σ

σ

σ
xm

x1

w1,1,1

w1,1,2

w1,1,3

w1,n1,m1,n1

⋮

σ w2,1,1

w1,2,2

⋮

σ w2,n2,m2,n2

w2,n2−1,m2,n2−1

σ

σ

σ

σ

σ

Class k = 1

Class k = 2

Class k = 3

wL,1,1

wL,3,nL−1

▶ There are p parameters in totol:
{wℓ,j,s}1≤ℓ≤L,1≤j≤nℓ,1≤s≤mℓ,j

▶ Input layer has one node for each feature

▶ Output for node j in hidden layer ℓ is
f(ℓ)j (x) = σ(

∑mℓ,j
s=1 wℓ,j,sf(ℓ−1)

s (x)), where mℓ,j is the
number of nodes in layer ℓ− 1 that are connected to
node j in layer ℓ

▶ σ(·) is the activation function; in this class, either
σ(z) = z or σ(z) = 1{z > 0}

▶ Each class has a final output (fully connected), and the
classification is given by the maximum output:
f(x;w) = argmax1≤k≤d

∑nL−1
s=1 wL,k,sf(L−1)

s (x)
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Multi-class neural networks with binary & linear & ReLU activation

▶ Neural network function class ΠReLU
p,S with a fixed structure S of p parameters

σ

Input

Hidden layers × (L − 1)

Output

⋮

x2 σ

σ

σ
xm

x1

w1,1,1

w1,1,2

w1,1,3

w1,n1,m1,n1

⋮

σ w2,1,1

w1,2,2

⋮

σ w2,n2,m2,n2

w2,n2−1,m2,n2−1

σ

σ

σ

σ

σ

Class k = 1

Class k = 2

Class k = 3

wL,1,1

wL,3,nL−1

▶ Structure notations the same as before

▶ Allow for ReLU activation function; in this class, either
σ(z) = z or σ(z) = 1{z > 0} or σ(z) = z1{z > 0}
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Multi-class neural networks

Theorem (J. 2023)
The Natarajan dimensions of Πbin-lin

p,S and ΠReLU
p,S are both upper bounded by O(d · p2), where d is the

number of classes, and p is the number of parameters.

▶ Textbook result [Shalev-Shwartz and Ben-David, 2014] shows neural nets with p parameters and only
binary activation has VC dimension O(p log p), while Sontag et al. [1998] shows neural nets with p
parameters and binary & linear activations has VC dimension O(p2)

▶ Results on VC dimensions suggest linear activation incurs a factor of p

▶ Our bound adds a factor of d for d-class classification, and agrees with Sontag et al. [1998] when
reduced to binary classification
▶ Our proof idea generalizes Sontag et al. [1998], which depends on an equivalent description of all

possible distinct functions that can be expressed by functions in the class
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Thank you!

Feel free to check arXiv: 2209.07015

Questions? reach me at ying531[at]stanford[dot]edu
My website https://ying531.github.io
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