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ML prediction assists decision

Job hiring: Who to reach out to? 
Who to proceed to interview? 

[smartdreamers.com]

[HeroHunt.ai]

[VerVoe.com]



ML prediction assists discovery

Drug discovery: Which molecules/compounds to 
proceed to physical screening and clinical trials?  

[DZone.com]

[technologynetworks.com]



Decision and discovery processes

‣ Find a few interesting cases from a huge pool

Disease (COVID)

Candidate drugs

…… × 100000

Job applicants

……

Position
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Decision and discovery processes

Disease 

Candidate drugs

…… × 100000

Prioritize  
high-score drugs

Expensive  
clinical trials…

× 1000

Smaller set

FDA approval

‣ Find a few interesting cases from a huge pool

2. Costly follow-up studies 
on the selected



The role of ML in decision and discovery processes

Disease 

Candidate drugs

…… × 100000

Traditional 
approach

Prioritize  
high-score drugs

Expensive  
clinical trials…

× 1000

Smaller set

FDA approval

ML-assisted 
approach

black 
box

Virtual screening  
(ML prediction)

[Koutsoukas et al., 2017] 
[Vamathevan et al., 2019]  
[Dara et al., 2021] 

…… × 100000

Predicted activity scores

̂Y1
̂Y2

̂Y3 ̂Y4
̂Y6

Low cost & fast  
once prediction model is built

‣ Find a few interesting cases from a huge pool



…… × 100000

Predicted activity scores

̂Y1
̂Y2

̂Y3 ̂Y4
̂Y6

The role of ML in decision and discovery processes

Disease 

Candidate drugs

…… × 100000

Traditional 
approach

Prioritize  
high-score drugs

Expensive  
clinical trials…

× 1000

Smaller set

FDA approval

ML-assisted 
approach

black 
box

Virtual screening  
(ML prediction)

‣ Error on the selected is concerning  
because of costly follow-up studies

What guarantee is sensible?

Can prediction from complex 
machines be trusted?



This work

Disease 

Candidate drugs

…… × 100000

black 
box

Expensive  
clinical trials…

FDA approval

‣ Screening with error control on the selected candidates

Wrapper for  
any ML model

…… × 100000

p1 p2

p3 p4

p6

Calibrated confidence scores in [0,1]

Threshold  
confidence scores

× 1000

Smaller set

Trusted!

90% of this set 
are active drugs



Mathematical setup

‣ Any pre-trained ML model  

‣ Training data  (already-screened drugs) 

‣ Test samples , only observe covariates  (new drugs)

̂μ : 𝒳 → 𝒴

{(Xi, Yi)}n
i=1

{(Xn+j, Yn+j)}m
j=1 {Xn+j}m

j=1

‣ For now: assume training and test samples are i.i.d. from an unknown distribution
‣ Drugs drawn from a diverse drug library 
‣ Will be relaxed later on to allow for distribution shift

‣ Interested in large outcomes:  for some user-specified thresholds  Yn+j > cn+j cn+j



Guarantees we seek for

‣ Recall: Interested in large outcomes:  for some user-specified  

‣ Our goal is to find a subset  as “promising candidates” 

‣ While controlling the false discovery rate (FDR) below some 

Yn+j > cn+j cn+j

ℛ ⊆ {1,…, m}

q ∈ (0,1)

FDR = 𝔼[FDP], FDP =
∑m

j=1 1{j ∈ ℛ, Yn+j ≤ cn+j}

1 ∨ |ℛ |
 Number of selected units≈

Number of selected but 
uninteresting units

‣ FDR measures the proportion of follow-up resources wasted on uninteresting cases

[Benjamini and Hochberg, 1995]



Reliable prediction: conformal inference

‣ Conformal prediction for reliable predictive inference

‣ Build any score function  based on the ML model, such as  
‣ Compute  for  
‣ Construct prediction interval

V(x, y) V(x, y) = − |y − ̂μ(x) |
Vi = V(Xi, Yi) i = 1,2,…, n

Ĉ(Xn+j; α) = {y : V(Xn+j, y) ≥ Quantile(α, ̂Pn(V1, …, Vn))}
‣ Assumption-free guarantee: 

ℙ(Yn+j ∈ Ĉ(Xn+j; α)) ≥ 1 − α, ∀j = 1,…, m

‣ True for any score function  that builds on any (independently trained) ML modelV(x, y)

[Vovk et al., 2005]

‣ A literature on using conformal prediction intervals for drug discovery [Norinder et al., 2014, 
Svensson et al., 2017, Ahlberg et al., 2017, Svensson et al., 2018, Cortes-Ciriano and Bender, 2019, Wang et al., 2022]



Validity for one single point is not sufficient

‣ Valid if those  covers  with probability  

‣ Coverage on average does not imply coverage on selected
Ĉ(Xn+j, q) = {1} Yn+j 1 − q

X

Y

‣ Constructing prediction intervals and then selecting promising ones is the 
approach in most works regarding conformal inference for drug discovery

‣  over the randomness in training data and the -th test data 

‣ In binary classification, to find  with  error, choose  ? 

ℙ(Yn+j ∈ Ĉ(Xn+j; α)) ≥ 1 − α j

Yn+j = 1 ≤ q Ĉ(Xn+j, q) = {1}



Validity for one single point is not sufficient
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(1 − α) {0}, {1}, {0,1}
Ĉ(Xn+j; α) = {1}

‣ Valid if those  covers  with probability  

‣ Coverage on average does not imply coverage on selected
Ĉ(Xn+j, q) = {1} Yn+j 1 − q

‣  over the randomness in training data and the -th test data 

‣ In binary classification, to find  with  error, choose  ? 

ℙ(Yn+j ∈ Ĉ(Xn+j; α)) ≥ 1 − α j

Yn+j = 1 ≤ q Ĉ(Xn+j, q) = {1}



Our approach: thresholding confidence measure 

‣ Main idea: use a sequence of prediction intervals to decide a confidence measure, 
then leverage multiple testing ideas to threshold the confidence measure

‣ Build any monotone score function  , i.e.,  implies  

‣ One-sided residual  

‣ Fitted cumulative distribution function  

‣ Compute  for  

‣ Compute test scores  for  

‣ Compute confidence measures (p-value in statistics)

V(x, y) y ≤ y′ V(x, y) ≤ V(x, y′ )
V(x, y) = y − ̂μ(x)

V(x, y) = ℙ̂(Y ≤ y ∣ X = x)

Vi = V(Xi, Yi) i = 1,2,…, n
̂Vn+j = V(Xn+j, cn+j) j = 1,2,…, m

‣ Recall: Interested in large outcomes:  for some user-specified Yn+j > cn+j cn+j

pj =
∑n

i=1 1{Vi < ̂Vn+j} + Uj

n + 1
, Uj ∼ Unif[0,1]

 rank of  among training scores ≈ ̂Vn+j {Vi}n
i=1

‣ Get selection set  by Benjamini-Hochberg procedure applied to  at level ℛ {pj} q



Disease 

Candidate drugs

…… × 100000 …… × 100000

p1 p2

p3 p4

p6

Calibrated confidence scores

Use training  
data

black 
box

ML model

…… × 100000

Predicted activity scores

̂Y1
̂Y2

̂Y3 ̂Y4
̂Y6

BH(q)

× 1000

Small set with  
90% active drugs

Our approach: thresholding confidence measure 

‣ Back to the implied pipeline in drug discovery



Interpreting the confidence measure 

‣ Recall: Interested in large outcomes:  for some user-specified Yn+j > cn+j cn+j

pj =
∑n

i=1 1{Vi < ̂Vn+j} + Uj

n + 1
, Uj ∼ Unif[0,1]

 critical point  such that  is all larger than  
    A smaller  means  is smaller than the typical behavior of 
≈ α Ĉ(Xn+j; α) cn+j

pj cn+j Yn+j

pj ≈ inf {α : cn+j ∉ Ĉ(Xn+j; α)}
Ĉ(Xn+j; α) = {y : V(Xn+j, y) ≥ Quantile(α, ̂Pn(V1, …, Vn))}

pj

α

0

By monotonicity,
Ĉ(Xn+j; α) = [η(Xn+j; α), ∞)

cn+j



A bit more statistics

‣ Recall: Interested in large outcomes:  for some user-specified Yn+j > cn+j cn+j

‣ This can be viewed as testing the random null hypotheses

Hj : Yn+j ≤ cn+j

‣ Our confidence measure  is a valid p-value for testing pj Hj

ℙ(pj ≤ t, Hj is true) ≤ t, ∀t ∈ [0,1]
Valid type-I control that accounts for the randomness in Hj



FDR control with the confidence measure

‣ Get selection set  by Benjamini-Hochberg procedure applied to  at level ℛ {pj} q

‣ Set , where ℛ = {j : pj ≤ q ̂k /m} ̂k = max {k :
m

∑
j=1

1{pj ≤ qk /m} ≥ k}

Theorem (J. and Candès, 2022) 

If  is monotone, the training and test data are i.i.d., and for each , data in 
 are mutually independent for  and , 

Then for any , the output  at level  obeys .

V(x, y) j
{Zi}n

i=1 ∪ {Z̃n+ℓ}ℓ≠j ∪ {Zn+j} Zi = (Xi, Yi) Z̃n+j = (Xn+j, cn+j)
q ∈ (0,1) ℛ q FDR ≤ q

‣ True for random  (will my health risk tomorrow be higher than today?)cn+j



A bit more math

‣ This is a new statistical problem: random p-values for random hypotheses 

‣ Also, p-values are mutually dependent, which is typically challenging for FDR control 

‣ Why it works: the  are “positively dependent”, which ensures FDR controlpj

‣ Proof step 1: Leave-one-out

FDR ≤
m

∑
j=1

𝔼[ 1{j ∈ ℛj→*}
1 ∨ |ℛj→* | ]

‣ Proof step 2: Uniform distribution + positive dependence

𝔼[ 1{j ∈ ℛj→*}
1 ∨ |ℛj→* | ] ≤

q
m



A bit more math

‣ Proof step 1: Leave-one-out

‣ Define  with the “true test score”  (uncomputable, just for analysis) 

‣ Let  be the rejection set of BH applied to  at level  

‣ Because of monotonicity, one can show that  on the event  and  

‣ This implies

p*j =
∑n

i=1 1{Vi < Vn+j} + Uj

n + 1
Vn+j = V(Xn+j, Yn+j)

ℛj→* p*j ∪ {pℓ}ℓ≠j q

ℛ = ℛj→* {Yn+j ≤ cn+j j ∈ ℛ}

FDR =
m

∑
j=1

𝔼[ 1{j ∈ ℛ, Yn+j ≤ cn+j}
1 ∨ |ℛ | ] ≤

m

∑
j=1

𝔼[ 1{j ∈ ℛj→*, Yn+j ≤ cn+j}
1 ∨ |ℛj→* | ] ≤

m

∑
j=1

𝔼[ 1{j ∈ ℛj→*}
1 ∨ |ℛj→* | ]



A bit more math

‣ Proof step 2: Uniform distribution + positive dependence

‣ For i.i.d. data, the oracle p-value is uniformly distributed  

‣ Also,  are PRDS on  

‣ This implies for every ,

p*j ∼ Unif[0,1]

{pℓ}ℓ≠j p*j
j

𝔼[ 1{j ∈ ℛj→*}
1 ∨ |ℛj→* | ] ≤

q
m

A random vector  is PRDS on  if for any increasing 
set , the probability  is increasing in 

X = (X1, …, Xm) xi

D ℙ(X ∈ D ∣ Xi = x) x

A set  is increasing if  and  implies D a ∈ D b ⪰ a b ∈ D

‣ Proof step 1: Leave-one-out

FDR ≤
m

∑
j=1

𝔼[ 1{j ∈ ℛj→*}
1 ∨ |ℛj→* | ]

[Benjamini and Yekutieli, 2001]



‣ Proof step 2: Uniform distribution + positive dependence

A bit more math

‣ This is a new statistical problem: random p-values for random hypotheses 

‣ Also, p-values are mutually dependent, which is typically challenging for FDR control 

‣ Why it works: the  are “positively dependent”, which ensures FDR controlpj

Takeaway:  
‣   controls the false selection error for 

each test sample  

‣ ’s are PRDS so they work well together

pj

j
pj

‣ Proof step 1: Leave-one-out

FDR ≤
m

∑
j=1

𝔼[ 1{j ∈ ℛj→*}
1 ∨ |ℛj→* | ]

𝔼[ 1{j ∈ ℛj→*}
1 ∨ |ℛj→* | ] ≤

q
m



Power boosting

‣ While FDR is controlled for any monotone score , some makes it powerful 

‣ If the thresholds are constant , a particularly powerful choice is `clipped’ score 

V(x, y)

cn+j ≡ c

V(x, y) = + ∞ ⋅ 1{y > c} + c ⋅ 1{y ≤ c} − ̂μ(x)

‣ In binary case and , the ideal score is monotone in  (see paper) c = 0 ℙ(Y = 1 ∣ X = x)



Real application: drug property prediction for HIV

‣ Binary : whether the drug interacts with the disease 

‣ The drug library is  in total, use  split 

‣ Very sparse data: only 3% drugs are active 

‣ Our hope: find a smaller subset to proceed so that  of the subset are active drugs 

‣ FDR level , use a small neural network (can be more complicated)

Y ∈ {0,1}

ntot = 41127 6 : 2 : 2

(1 − q)

q ∈ {0.1,0.2,0.5}

Realized FDR Power

FDR level 0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5

  Powerful score 0.0957 0.196 0.495 0.0788 0.174 0.410 26.5 64.2 240

  Score 0.0989 0.196 0.494 0.0766 0.174 0.410 25.8 64.4 239

|ℛ |

V(x, y) = y − ̂μ(x)



Real application: drug-target-interaction prediction

‣ Davis dataset,  continuous binding affinities,  feature for a drug-target pair 

‣ The drug library is  in total, use  split 

‣ Set  as the -th quantile of the outcomes in the first training fold with the same 
binding target as test sample , where 

Y ∈ ℝ X

ntot = 30060 2 : 2 : 6

cn+j qpop

j qpop ∈ {0.7,0.8,0.9}

‣ FDR level  q ∈ {0.1,0.2,0.5}

method BH_res BH_clip
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V(x, y) = y − ̂μ(x) Powerful score



So far, and next

‣ A method that turns any prediction model into a reliable selection procedure 

‣ Theoretically, FDR control due to monotonicity and positive dependence (PRDS) 

‣ Works reasonably well in real drug discovery tasks 

‣ Next: dealing with distribution shifts

‣ + job hiring tasks in paper 

‣ + more benchmarks and applications in ongoing work



Distribution shifts

‣ The only assumption for this method to work is i.i.d. data 

‣ Are my evaluated drugs comparable to the unknown drugs?

‣ Yes if the evaluated ones are drawn without preference from your library

Training drugs New drugs



Distribution shifts

‣ The only assumption for this method to work is i.i.d. data 

‣ Are my evaluated drugs comparable to the unknown drugs?

‣ Similar issues happen in job hiring, health monitoring, counterfactual inference…

‣ Candidates documented last year may differ from current 

‣ Patients may differ in demographics across hospitals 

‣ People under treatment may be different than those under control

‣ Yes if the evaluated ones are drawn without preference from your library

‣ No if you preferred drugs with some specific structures, etc

Training drugs New drugs



Extending the setting to covariate shifts

<latexit sha1_base64="dUiHbFRBM9HKz0D6So5eeDhVj3A=">AAACInicbVDJSgNBEO1xjXEb9eilMQgJSJgR14MQ9OIxAbNAJoSeTk/SpGehu0YThvkWL/6KFw+KehL8GDvLQRMfFDzeq6KqnhsJrsCyvoyFxaXlldXMWnZ9Y3Nr29zZrakwlpRVaShC2XCJYoIHrAocBGtEkhHfFazu9m9Gfv2eScXD4A6GEWv5pBtwj1MCWmqbl44nCU0cYANIOqnjE+i5blJJ0zmtnKb5wdGwgK/wQ35QaJs5q2iNgeeJPSU5NEW5bX44nZDGPguACqJU07YiaCVEAqeCpVknViwitE+6rKlpQHymWsn4xRQfaqWDvVDqCgCP1d8TCfGVGvqu7hydq2a9kfif14zBu2glPIhiYAGdLPJigSHEo7xwh0tGQQw1IVRyfSumPaIzA51qVodgz748T2rHRfuseFo5yZWup3Fk0D46QHlko3NUQreojKqIokf0jF7Rm/FkvBjvxuekdcGYzuyhPzC+fwAKhaUh</latexit>

dQ
dP (x, y) = w(x)

‣ Formally, we assume the test data are i.i.d. from some unknown 

‣ And the training data are i.i.d. from some unknown 

‣ We only know that they are related by a covariate shift:   

<latexit sha1_base64="Qqa10QLsJttEOW8SDqc2SvOU5og=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIr2XRjcsW7APboWTS2zY0kxmSjFCG/oUbF4q49W/c+Tdm2llo9UDgcM695NwTxIJr47pfTmFldW19o7hZ2tre2d0r7x+0dJQohk0WiUh1AqpRcIlNw43ATqyQhoHAdjC5zfz2IyrNI3lvpjH6IR1JPuSMGis99EJqxkGQNmb9csWtunOQv8TLSQVy1Pvlz94gYkmI0jBBte56bmz8lCrDmcBZqZdojCmb0BF2LZU0RO2n88QzcmKVARlGyj5pyFz9uZHSUOtpGNjJLKFe9jLxP6+bmOG1n3IZJwYlW3w0TAQxEcnOJwOukBkxtYQyxW1WwsZUUWZsSSVbgrd88l/SOqt6l9WLxnmldpPXUYQjOIZT8OAKanAHdWgCAwlP8AKvjnaenTfnfTFacPKdQ/gF5+MbvxqQ+w==</latexit>

Q
<latexit sha1_base64="DQe/I6rP9i2rKocbfpbiVG37WgE=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIr2XRjcsK9oHtUDJp2oZmMkNyRyhD/8KNC0Xc+jfu/Bsz7Sy09UDgcM695NwTxFIYdN1vp7Cyura+UdwsbW3v7O6V9w+aJko04w0WyUi3A2q4FIo3UKDk7VhzGgaSt4Lxbea3nrg2IlIPOIm5H9KhEgPBKFrpsRtSHAVBWp/2yhW36s5AlomXkwrkqPfKX91+xJKQK2SSGtPx3Bj9lGoUTPJpqZsYHlM2pkPesVTRkBs/nSWekhOr9Mkg0vYpJDP190ZKQ2MmYWAns4Rm0cvE/7xOgoNrPxUqTpArNv9okEiCEcnOJ32hOUM5sYQyLWxWwkZUU4a2pJItwVs8eZk0z6reZfXi/rxSu8nrKMIRHMMpeHAFNbiDOjSAgYJneIU3xzgvzrvzMR8tOPnOIfyB8/kDvZWQ+g==</latexit>P

‣ The distribution shift is fully attributed to covariates

[Tibshirani et al., 2019]



Confidence measure under covariate shift

‣ Under covariate shift, we need a new confidence measure

0.25

0.50

0.75

1.00

0.2 0.4 0.6 0.8
FDR target

R
ea

liz
ed

 F
D

R

method naive weighted

0

1

2

3

4

0.00 0.25 0.50 0.75 1.00
Oracle p−values

D
en

si
ty

method naive weighted

p-values are no longer valid FDR can be violated

If use previous confidence measures (p-values) when there is covariate shift



Confidence measure under covariate shift

‣ Under covariate shift, we need a new confidence measure

<latexit sha1_base64="AE7IEewZ4dxu76l4eDx9+w2XVMU="></latexit>

pj =

Pn
i=1 w(Xi)1{Vi < V̂n+j}+ w(Xn+j)Pn

i=1 w(Xi) + w(Xn+j)

 weighted rank of  among training scores ≈ ̂Vn+j {Vi}n
i=1

‣ Build any monotone score function  , i.e.,  implies  

‣ One-sided residual  

‣ Fitted cumulative distribution function  

‣ Compute  for  

‣ Compute test scores  for  

‣ Compute weighted confidence measures (p-value in statistics) 

V(x, y) y ≤ y′ V(x, y) ≤ V(x, y′ )
V(x, y) = y − ̂μ(x)

V(x, y) = ℙ̂(Y ≤ y ∣ X = x)

Vi = V(Xi, Yi) i = 1,2,…, n
̂Vn+j = V(Xn+j, cn+j) j = 1,2,…, m



Statistical properties

‣ The new confidence measure has similar statistical properties as before

‣ Still, we are testing the random null hypotheses

Hj : Yn+j ≤ cn+j

‣ Our  is a valid p-value for testing  under covariate shiftpj Hj

ℙ(pj ≤ t, Hj is true) ≤ t, ∀t ∈ [0,1]
Probability over both training 

data and the test sample j

[Asserting  if ]  controls type-I error for a single test pointYn+j > cn+j pj ≤ α



Statistical properties

‣ The new confidence measure has similar statistical properties as before

‣ Still, we are testing the random null hypotheses

Hj : Yn+j ≤ cn+j

‣ Our  is a valid p-value for testing  under covariate shiftpj Hj

ℙ(pj ≤ t, Hj is true) ≤ t, ∀t ∈ [0,1]
Probability over both training 

data and the test sample j

[Asserting  if ]  controls type-I error for a single test pointYn+j ≤ cn+j pj ≤ α

(Recall for i.i.d.) Takeaway:  
‣   controls the false selection error for 

each test sample  

‣ ’s are PRDS so they work well together

pj

j
pj

‣ Does the previous recipe work? ?



Statistical properties

‣ Weighted conformal p-values are not PRDS

Theorem (J. and Candès, in preparation, 2023+) 

Suppose we construct  assuming . Then there exists a weight function 
, a monotone score function , such that for training and test samples 

obeying a covariate shift, the p-values  are not PRDS on  for all .

pj Yn+j = cn+j

w( ⋅ ) V( ⋅ , ⋅ )
{pℓ}ℓ≠j pj j

‣ Not sure theoretically, but works in our numerical experiments 
‣ In forthcoming paper: A new procedure exactly controlling FDR in finite samples

‣ Does the previous recipe work?

(Recall for i.i.d.) Takeaway:  
‣   controls the false selection error for 

each test sample  

‣ ’s are PRDS so they work well together

pj

j
pj



Other applications of this framework

‣ Detecting positive individual treatment effects

‣ Individual treatment effects are random variables that describe the difference in 
outcomes with treatment  versus without treatment  

‣ We are interested in whether  or not  

‣ Equivalent to taking  and  for a control unit

O(1) O(0)
On+j(1) > On+j(0)

Yn+j = On+j(1) cn+j = On+j(0)

‣ Detecting outliers and concept drifts

‣ Given a set of normal transactions from  and a set of new transactions 
‣ We are interested in whether the new transactions are from  (covariate shift from )

ℙ
ℚ ℙ



Summary

‣ In prediction-assisted screening problems, FDR can be a sensible measure

Candidate drugs

……× 100000

 
 

black 
box

any ML 
model

‣ Useful if interested in “large” outcomes 
‣ Builds confidence scores (p-values) upon any prediction model 
‣ Controls FDR so that your follow-up investigations are well-deserved

‣ A method that turns any prediction model into a reliable selection procedure 

‣ Some more complicated methodology & theory

‣ Extension to situations with covariate shifts

× 1000

Small set with  
(1-q) true discovery

Trusted!
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