Selection by Prediction Prediction-assisted screening and discovery with conformal p-values

Ying Jin

Department of Statistics Stanford University

Joint work with Emmanuel Candès

One World Seminar on Mathematics of Machine Learning, April 19, 2023

ML prediction assists decision

HIRING RESOURCES 9 MIN READ

How Good Machine Learning in Recruitment **Can Radically Transform Your Hiring**

VerVoe.com

Market Insights — 24 min read

Machine learning in recruitment: a deep dive

Machine Learning's promise is to find the perfect candidate and assess them without your interference, but what is it exactly and how does it really help you?

The Impact of Machine Learning on Modern Recruitment

SmartDreamers Team • Social Recruiting, Automation Oct 18 • 4 min read

smartdreamers.com

Job hiring: Who to reach out to? Who to proceed to interview?

[HeroHunt.ai]

ML prediction assists discovery

Deep Learning

Shortcuts to Simulation: How Deep Learning Accelerates Virtual Screening for Drug Discovery

May 11, 2020 🕓 14 min read

Learning

Article Published: April 16, 2021 | Neeta Ratanghayra, MPharm

Drug discovery: Which molecules/compounds to proceed to physical screening and clinical trials?

DZone.com

Automating Drug Discovery With Machine

[technologynetworks.com]

Find a few interesting cases from a huge pool

Disease (COVID)

Candidate drugs

..... × 100000

Position

Job applicants

Candidate drugs

Evaluated activity scores

The role of ML in decision and discovery processes

The role of ML in decision and discovery processes

Error on the selected is concerning

This work

Candidate drugs

Calibrated confidence scores in [0,1]

Mathematical setup

- Any pre-trained ML model $\hat{\mu} \colon \mathscr{X} \to \mathscr{Y}$
- Training data $\{(X_i, Y_i)\}_{i=1}^n$ (already-screened drugs)
- Test samples $\{(X_{n+j}, Y_{n+j})\}_{j=1}^m$, only observe covariates $\{X_{n+j}\}_{j=1}^m$ (new drugs)
- For now: assume training and test samples are i.i.d. from an unknown distribution
 - Drugs drawn from a diverse drug library
 - Will be relaxed later on to allow for distribution shift
- Interested in large outcomes: $Y_{n+j} > c_{n+j}$ for some user-specified thresholds c_{n+j}

Guarantees we seek for

Recall: Interested in large outcomes: $Y_{n+i} > c_{n+i}$ for some user-specified c_{n+j}

- Our goal is to find a subset $\mathscr{R} \subseteq \{1, ..., m\}$ as "promising candidates"
- While controlling the false discovery rate (FDR) below some $q \in (0,1)$

$FDR = \mathbb{E}[FDP], FDP =$

[Benjamini and Hochberg, 1995]

$$\sum_{i=1}^{n} \mathbf{1}\{j \in \mathcal{R}, Y_{n+j} \le c_{n+j}\}$$

Number of selected but uninteresting units

 \approx Number of selected units

FDR measures the proportion of follow-up resources wasted on uninteresting cases

Reliable prediction: conformal inference

Conformal prediction for reliable predictive inference [Vovk et al., 2005]

- Build any score function V(x, y) based on the ML model, such as $V(x, y) = -|y \hat{\mu}(x)|$
- Compute $V_i = V(X_i, Y_i)$ for i = 1, 2, ..., n
- Construct prediction interval

$$\hat{C}(X_{n+j};\alpha) = \left\{ y \colon V(X_{n+j},y) \ge \mathsf{Quantile}(\alpha,\hat{P}_n(V_1,\ldots,V_n)) \right\}$$

Assumption-free guarantee:

- True for any score function V(x, y) that builds on any (independently trained) ML model
- Svensson et al., 2017, Ahlberg et al., 2017, Svensson et al., 2018, Cortes-Ciriano and Bender, 2019, Wang et al., 2022

 $\mathbb{P}(Y_{n+i} \in \hat{C}(X_{n+i}; \alpha)) \ge 1 - \alpha, \quad \forall j = 1, \dots, m$

A literature on using conformal prediction intervals for drug discovery [Norinder et al., 2014,

Validity for one single point is not sufficient

- In binary classification, to find $Y_{n+i} = 1$ with $\leq q$ error, choose $\hat{C}(X_{n+i}, q) = \{1\}$?
 - ► Valid if those $\hat{C}(X_{n+j}, q) = \{1\}$ covers Y_{n+j} with probability 1 q
 - Coverage on average does not imply coverage on selected

Constructing prediction intervals and then selecting promising ones is the approach in most works regarding conformal inference for drug discovery

• $\mathbb{P}(Y_{n+i} \in \hat{C}(X_{n+i}; \alpha)) \ge 1 - \alpha$ over the randomness in training data and the *j*-th test data

Validity for one single point is not sufficient

- ► Valid if those $\hat{C}(X_{n+i}, q) = \{1\}$ covers Y_{n+i} with probability 1 q
- Coverage on average does not imply coverage on selected

► $\mathbb{P}(Y_{n+i} \in \hat{C}(X_{n+i}; \alpha)) \ge 1 - \alpha$ over the randomness in training data and the *j*-th test data

In binary classification, to find $Y_{n+i} = 1$ with $\leq q$ error, choose $\hat{C}(X_{n+i}, q) = \{1\}$?

Build $(1 - \alpha)$ prediction sets taking the form $\{0\}, \{1\}, \{0,1\}$ Select those $\hat{C}(X_{n+i}; \alpha) = \{1\}$ to get the **orange** curve Marginal miscoverage for the **dark** curve

Our approach: thresholding confidence measure

- Recall: Interested in large outcomes: $Y_{n+i} > c_{n+i}$ for some user-specified c_{n+i}
- then leverage multiple testing ideas to threshold the confidence measure
 - Build any monotone score function V(x, y)
 - One-sided residual $V(x, y) = y \hat{\mu}(x)$
 - Fitted cumulative distribution function V(x, y
 - Compute $V_i = V(X_i, Y_i)$ for i = 1, 2, ..., n
 - Compute test scores $\hat{V}_{n+j} = V(X_{n+j}, c_{n+j})$ for j = 1, 2, ..., m
 - Compute confidence measures (p-value in statistics)

$$p_j = \frac{\sum_{i=1}^n \mathbf{1}\{V_i < \hat{V}_{n+j}\} + U_j}{n+1}, \quad U_j \sim \mathsf{Unif}[0,1]$$

Get selection set \mathscr{R} by Benjamini-Hochberg procedure applied to $\{p_i\}$ at level q

Main idea: use a sequence of prediction intervals to decide a confidence measure,

), i.e.,
$$y \le y'$$
 implies $V(x, y) \le V(x, y')$

$$\psi) = \hat{\mathbb{P}}(Y \le y \mid X = x)$$

 \approx rank of \hat{V}_{n+i} among training scores $\{V_i\}_{i=1}^n$

Our approach: thresholding confidence measure

Back to the implied pipeline in drug discovery

Predicted activity scores

Calibrated confidence scores

Interpreting the confidence measure

Recall: Interested in large outcomes: $Y_{n+j} > c_{n+j}$ for some user-specified c_{n+j}

$$p_j = \frac{\sum_{i=1}^n \mathbf{1}\{V_i < \hat{V}_{n+j}\} + U_j}{n+1}, \quad U_j \sim \text{Unif}[0,1]$$

$$p_{j} \approx \inf \left\{ \alpha \colon c_{n+j} \notin \hat{C}(X_{n+j}; \alpha) \right\}$$
$$\hat{C}(X_{n+j}; \alpha) = \left\{ y \colon V(X_{n+j}, y) \ge \text{Quantile}(\alpha, \hat{P}_{n}(V_{n+j}; \alpha)) \right\}$$

 $V_1, ..., V_n))\}$

 \approx critical point α such that $\hat{C}(X_{n+j}; \alpha)$ is all larger than c_{n+j}

A smaller p_j means c_{n+j} is smaller than the typical behavior of Y_{n+j}

By monotonicity, $\hat{C}(X_{n+j};\alpha) = [\eta(X_{n+j};\alpha),\infty)$

A bit more statistics

- Recall: Interested in large outcomes: $Y_{n+i} > c_{n+i}$ for some user-specified c_{n+i}
- This can be viewed as testing the random null hypotheses

$$H_j: Y_{n+j} \leq$$

- Our confidence measure p_i is a valid p-value for testing H_i
 - $\mathbb{P}(p_i \le t, H_i \text{ is true}) \le t, \quad \forall t \in [0,1]$
 - Valid type-I control that accounts for the randomness in H_i

 $\leq c_{n+j}$

FDR control with the confidence measure

• Get selection set \Re by Benjamini-Hochberg procedure applied to $\{p_i\}$ at level q

• Set $\mathscr{R} = \{j: p_j \le q\hat{k}/m\}$, where $\hat{k} = \max\left\{k: \sum_{i=1}^m \mathbf{1}\{p_j \le qk/m\} \ge k\right\}$

Theorem (J. and Candès, 2022)

If V(x, y) is monotone, the training and test data are i.i.d., and for each j, data in $\{Z_i\}_{i=1}^n \cup \{\tilde{Z}_{n+\ell}\}_{\ell \neq j} \cup \{Z_{n+j}\}$ are mutually independent for $Z_i = (X_i, Y_i)$ and $\tilde{Z}_{n+j} = (X_{n+j}, c_{n+j})$, Then for any $q \in (0,1)$, the output \mathscr{R} at level q obeys $FDR \leq q$.

• True for random c_{n+j} (will my health risk tomorrow be higher than today?)

berg procedure applied to $\{p_j\}$ at level q $\sum_{j=1}^{n} \mathbf{1}\{p_j \le qk/m\} \ge k$

- This is a new statistical problem: random p-values for random hypotheses Also, p-values are mutually dependent, which is typically challenging for FDR control
- Why it works: the p_i are "positively dependent", which ensures FDR control
- Proof step 1: Leave-one-out

$$FDR \leq \sum_{j=1}^{m} \mathbb{E}\left[\frac{\mathbf{1}\{j \in \mathcal{R}_{j}\}}{1 \lor |\mathcal{R}_{j}|}\right]$$

Proof step 2: Uniform distribution + positive dependence

$$\mathsf{E}\left[\frac{\mathbf{1}\{j\in\mathscr{R}_{j\to*}\}}{1\lor|\mathscr{R}_{j\to*}|}\right] \leq \frac{q}{m}$$

 $\left[\frac{j \rightarrow *}{j \rightarrow *}\right]$

Proof step 1: Leave-one-out

• Define
$$p_j^* = \frac{\sum_{i=1}^n \mathbf{1}\{V_i < V_{n+j}\} + U_j}{n+1}$$
 with the "true tes

- st score" $V_{n+j} = V(X_{n+j}, Y_{n+j})$ (uncomputable, just for analysis) ▶ Let $\mathscr{R}_{j \to *}$ be the rejection set of BH applied to $p_j^* \cup \{p_\ell\}_{\ell \neq j}$ at level qBecause of monotonicity, one can show that $\mathscr{R} = \mathscr{R}_{j \to *}$ on the event $\{Y_{n+j} \leq c_{n+j} \text{ and } j \in \mathscr{R}\}$
- This implies

$$FDR = \sum_{j=1}^{m} \mathbb{E}\left[\frac{1\{j \in \mathcal{R}, Y_{n+j} \le c_{n+j}\}}{1 \lor |\mathcal{R}|}\right] \le \sum_{j=1}^{m} \mathbb{E}\left[\frac{1\{j \in \mathcal{R}_{j \to *}, Y_{n+j} \le c_{n+j}\}}{1 \lor |\mathcal{R}_{j \to *}|}\right] \le \sum_{j=1}^{m} \mathbb{E}\left[\frac{1\{j \in \mathcal{R}_{j \to *}\}}{1 \lor |\mathcal{R}_{j \to *}|}\right]$$

Proof step 1: Leave-one-out

$$FDR \leq \sum_{j=1}^{m} \mathbb{E}\left[\frac{1\{j \in \mathcal{R}_{j}\}}{1 \lor |\mathcal{R}_{j}|}\right]$$

Proof step 2: Uniform distribution + positive dependence

- For i.i.d. data, the oracle p-value is uniformly distributed $p_i^* \sim \text{Unif}[0,1]$
- Also, $\{p_{\ell}\}_{\ell \neq j}$ are PRDS on p_i^*
- This implies for every *j*, [Benjamini and Yekutieli, 2001]

$$\mathbb{E}\left[\frac{\mathbf{1}\{j \in \mathcal{R}_{j \to *}\}}{1 \lor |\mathcal{R}_{j \to *}|}\right] \leq \frac{q}{m}$$

A set D is increasing if $a \in D$ and $b \geq a$ implies $b \in D$

- This is a new statistical problem: random p-values for random hypotheses
- Also, p-values are mutually dependent, which is typically challenging for FDR control
- Why it works: the p_i are "positively dependent", which ensures FDR control
- Proof step 1: Leave-one-out

$$FDR \leq \sum_{j=1}^{m} \mathbb{E}\left[\frac{\mathbf{1}\{j \in \mathcal{R}_{j \to *}\}}{1 \lor |\mathcal{R}_{j \to *}|}\right]$$

Proof step 2: Uniform distribution + positive dependence

$$\mathsf{E}\left[\frac{\mathbf{1}\{j\in\mathscr{R}_{j\to*}\}}{1\lor|\mathscr{R}_{j\to*}|}\right] \leq \frac{q}{m}$$

Takeaway:

- p_i controls the false selection error for
- each test sample j
- p_i 's are PRDS so they work well together

Power boosting

- While FDR is controlled for any monotone score V(x, y), some makes it powerful If the thresholds are constant $c_{n+i} \equiv c$, a particularly powerful choice is `clipped' score's core's c $V(x, y) = +\infty \cdot \mathbf{1}\{y > c\} + c \cdot \mathbf{1}\{y \le c\} - \hat{\mu}(x)$

- In binary case and c = 0, the ideal score is monotone in $\mathbb{P}(Y = 1 \mid X = x)$ (see paper)

Real application: drug property prediction for HIV

- Binary $Y \in \{0,1\}$: whether the drug interacts with the disease
- The drug library is $n_{tot} = 41127$ in total, use 6:2:2 split
- Very sparse data: only 3% drugs are active
- Our hope: find a smaller subset to proceed so that (1 q) of the subset are active drugs
- FDR level $q \in \{0.1, 0.2, 0.5\}$, use a small neural network (can be more complicated)

	Realized FDR			Power			$ \mathcal{R} $		
FDR level	0.1	0.2	0.5	0.1	0.2	0.5	0.1	0.2	0.5
Powerful score	0.0957	0.196	0.495	0.0788	0.174	0.410	26.5	64.2	240
Score $V(x, y) = y - \hat{\mu}(x)$	0.0989	0.196	0.494	0.0766	0.174	0.410	25.8	64.4	239

Real application: drug-target-interaction prediction

- ► Davis dataset, $Y \in \mathbb{R}$ continuous binding affinities, X feature for a drug-target pair
- The drug library is $n_{tot} = 30060$ in total, use 2:2:6 split
- ► Set c_{n+j} as the q_{pop} -th quantile of the outcomes in the first training fold with the same binding target as test sample *j*, where $q_{pop} \in \{0.7, 0.8, 0.9\}$
- FDR level $q \in \{0.1, 0.2, 0.5\}$

So far, and next

- A method that turns any prediction model into a reliable selection procedure Theoretically, FDR control due to monotonicity and positive dependence (PRDS)
- Works reasonably well in real drug discovery tasks
 - + job hiring tasks in paper
 - + more benchmarks and applications in ongoing work

Next: dealing with distribution shifts

Distribution shifts

- The only assumption for this method to work is i.i.d. data
- Are my evaluated drugs comparable to the unknown drugs?
 - **Yes** if the evaluated ones are drawn without preference from your library

Training drugs

New drugs

Distribution shifts

- The only assumption for this method to work is i.i.d. data
- Are my evaluated drugs comparable to the unknown drugs?
 - **Yes** if the evaluated ones are drawn without preference from your library
 - **NO** if you preferred drugs with some specific structures, etc.

- Candidates documented last year may differ from current
- Patients may differ in demographics across hospitals
- People under treatment may be different than those under control

Training drugs

New drugs

Similar issues happen in job hiring, health monitoring, counterfactual inference...

Extending the setting to covariate shifts

- \blacktriangleright Formally, we assume the test data are i.i.d. from some unknown $\mathbb Q$
- And the training data are i.i.d. from some unknown $\mathbb P$
- We only know that they are related by a covariate shift:

The distribution shift is fully attributed to covariates

[Tibshirani et al., 2019]

$$(x, y) = w(x)$$

Confidence measure under covariate shift

Under covariate shift, we need a new confidence measure

If use previous confidence measures (p-values) when there is covariate shift

p-values are no longer valid

FDR can be violated

Confidence measure under covariate shift

Under covariate shift, we need a new confidence measure

- Build any monotone score function V(x, y), i.e., $y \le y'$ implies $V(x, y) \le V(x, y')$
 - One-sided residual $V(x, y) = y \hat{\mu}(x)$
 - Fitted cumulative distribution function $V(x, y) = \hat{\mathbb{P}}(Y \le y \mid X = x)$
- Compute $V_i = V(X_i, Y_i)$ for i = 1, 2, ..., n
- Compute test scores $\hat{V}_{n+j} = V(X_{n+j}, c_{n+j})$ for j = 1, 2, ..., m
- Compute weighted confidence measures (p-value in statistics)

$$p_j = \frac{\sum_{i=1}^n w(X_i) \mathbf{1}\{V_i < \hat{V}_{n+j}\} + w(X_{n+j})}{\sum_{i=1}^n w(X_i) + w(X_{n+j})}$$

 \approx weighted rank of \hat{V}_{n+i} among training scores $\{V_i\}_{i=1}^n$

Statistical properties

- The new confidence measure has similar statistical properties as before
- Still, we are testing the random null hypotheses

$$H_j: Y_{n+j} \leq$$

- Our p_i is a valid p-value for testing H_i under covariate shift
 - $\mathbb{P}(p_j \le t, H_j \text{ is true}) \le t, \quad \forall t \in [0,1]$

Probability over both training data and the test sample *j*

 C_{n+j}

[Asserting $Y_{n+j} > c_{n+j}$ if $p_j \le \alpha$] controls type-I error for a single test point

Statistical properties

- The new confidence measure has similar statistical properties as before
- Still, we are testing the random null hypotheses

$$H_j: Y_{n+j} \leq$$

► Our p_j is a valid p-value for testing H_j under covariate shift $P(p_j \le t, H_j \text{ is true}) \le t, \forall t \in [0,1]$

Probability over both training [Asserting Y_{n+j} data and the test sample j

Does the previous recipe work?

 C_{n+j}

Statistical properties

Weighted conformal p-values are **not PRDS**

Does the previous recipe work?

- Not sure theoretically, but works in our numerical experiments
- In forthcoming paper: A new procedure **exactly** controlling FDR in **finite** samples

Suppose we construct p_i assuming $Y_{n+i} = c_{n+i}$. Then there exists a weight function $w(\cdot)$, a monotone score function $V(\cdot, \cdot)$, such that for training and test samples

> (Recall for i.i.d.) **Takeaway:** • p_i controls the false selection error for each test sample j • p_i 's are **P** S so they work well together

Other applications of this framework

Detecting positive individual treatment effects

- Individual treatment effects are random variables that describe the difference in outcomes with treatment O(1) versus without treatment O(0)
- We are interested in whether $O_{n+j}(1) > O_{n+j}(0)$ or not
- Equivalent to taking $Y_{n+j} = O_{n+j}(1)$ and $c_{n+j} = O_{n+j}(0)$ for a control unit

Detecting outliers and concept drifts

- Given a set of normal transactions from P and a set of new transactions We are interested in whether the new transactions are from \mathbb{Q} (covariate shift from \mathbb{P})

Summary

- In prediction-assisted screening problems, FDR can be a sensible measure
- A method that turns any prediction model into a reliable selection procedure
 - Useful if interested in "large" outcomes
 - Builds confidence scores (p-values) upon any prediction model Controls FDR so that your follow-up investigations are well-deserved
- Extension to situations with covariate shifts
 - Some more complicated methodology & theory

arXiv: 2210.01408

